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ABSTRACT

Genes regulate fundamental processes in living cells, such
as the synthesis of proteins or other functional molecules.
Studying gene expression is hence crucial for both diagnos-
tic and therapeutic purposes. State-of-the-art Deep Learning
techniques such as Xpresso have proposed to predict gene
expression from raw DNA sequences. However, DNA se-
quences challenge computational approaches because of their
length, typically in the order of the thousands, and spar-
sity, requiring models to capture both short- and long-range
dependencies. Indeed, the application of recent techniques
like transformers is prohibitive with common hardware re-
sources. This paper proposes FNETCOMPRESSION, a novel
gene-expression prediction method. Crucially, FNETCOM-
PRESSION combines Convolutional encoders and memory-
efficient Transformers to compress the sequence up to 95%
with minimal performance tradeoff.

Experiments on the Xpresso dataset show that FNET-
COMPRESSION outscores our baselines and the margin is
statistically significant. Moreover, FNETCOMPRESSION is
88% faster than a classical transformer-based architecture
with minimal performance tradeoff.1

Index Terms— Deep Learning, DNA sequences, Fourier
compression, gene-expression, transformers,

1. INTRODUCTION

Gene Expression [1] regulates the existence of every living or-
ganism. It consists in the fundamental mechanisms the cells
exploit to gather information from the deoxyribonucleic acid
(DNA) and synthesize functional molecules (e.g., proteins)
according to inherent regulatory mechanisms. Recent work
has proposed to use Deep Learning (DL) models to predict
gene expression directly from raw DNA sequences sampled
and sequenced from living organisms, e.g., human tissues [2].
However, DNA sequences often count thousands of elements,

1© 2023 IEEE. Personal use of this material is permitted. Permission
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including reprinting/republishing this material for advertising or promotional
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Fig. 1. FNETCOMPRESSION overview (left). After sequence
embedding and pooling, DFTCompression (center) and MHA
(right) layers compress and route information from the input
sequence. Similar functional blocks share background colors.

and the signal within it is sparse: functional coding regions al-
ternate with long non-coding parts. Length and sparsity make
such sequences impractical for modern DL models, motivat-
ing increasing interest in compression for efficiency and noise
reduction. Therefore, recent methods encode the sequence of
original base pairs (bp) into shorter sequences, where each
new token “represents” several bps. 1D Convolution layers
[3], Long Short-Term Memory [4], and Transformer-based
networks [5] have been adopted for the task [2, 6, 7, 8].

The nature of such DNA sequences requires gene expres-
sion prediction algorithms to learn from both local- and long-
range interactions. For example, recent evidence found inter-
actions among DNA elements at several kilo base-pairs (kbp)
of distance [9]. Transformers models [5] provide a suitable
method to learn from both short- and long-range dependen-



cies: the Multi-Headed Attention (MHA) mechanism. A typ-
ical MHA layer connects every input item with every other
item and learns how to weigh every pair. By contrast, Convo-
lutional Neural Networks (CNNs) [10] need a deep structure
with many layers to enlarge the receptive field to distant el-
ements. However, MHA’s memory footprint grows quadrati-
cally with the sequence length, motivating recent research ef-
forts on efficient transformers [11, 12]. FNet [13] is a promi-
nent example: the network substitutes MHA with a Discrete
Fourier Transform (DFT), a non-parametric, linearithmic to-
ken mixing strategy.

Contributions. This work introduces FNETCOMPRES-
SION, a novel approach to gene expression prediction from
long DNA sequences. FNETCOMPRESSION uses convolution
kernels, DFT-based transformers, and low-pass filters to com-
press input sequences and a final MHA layer for improved
information routing. Results on gene-expression datasets [2]
show that FNETCOMPRESSION significantly outperforms the
baseline solution, reaching up to the 93% of performances of
less efficient standard transformers despite compressing in-
puts by 95% of their length. Moreover, we conducted a quali-
tative analysis on FNETCOMPRESSION and discovered that i)
attention weights are stronger on low-frequency components
of the sequence, and ii) all elements contribute to the predic-
tion.

2. RELATED WORK

Recent advances in sequence modeling and compression have
motivated new neural gene expression models learning from
raw DNA sequences. Xpresso [2] (Agarwal et al., 2020) is
a state-of-the-art Deep Convolutional Neural Network[10]
in the field of gene expression. The network predicts the
steady-state gene expression levels in human and mouse or-
ganisms, exploiting DNA sequences and features associated
with mRNA stability. The authors claim that Xpresso ex-
plains 59% of variation (measured with R2) in steady-state
mRNA levels in humans. Xpresso handles sequences of sev-
eral thousand base pairs. The best-reported range is 7,000 bp
and 3,500 bps, respectively, upstream and downstream Tran-
scription Start Site (TSS). Note that the information around
the TSS is an important proxy for gene-expression[14]. We
build on Xpresso and use initial Convolutional layers for in-
put summarization. However, we differ on the embedding
of the nitrogenous basis, the type of pooling layers, and the
transformer encoder. Expecto [6] (Zhou et al., 2018) is a
Convolutional Deep Neural Network for predicting tissue-
specific gene expression levels in humans. Unlike Xpresso,
it requires additional biological information related to chro-
matin, defining different experimental conditions. Enformer
[7] (Avsec et al., 2021) is a state-of-the-art transformer-based
architecture for encoding even longer DNA sequences. Al-
though Enformer and FNETCOMPRESSION share several
architectural parts, e.g., pooling and transformer blocks, the

former was devised to predict sequences of biological tracks.
FNet [13] (Lee-Thorp et al., 2021) replaces the self-attention
sublayers, which pay a quadratic complexity, with a stan-
dard, non-parametrized and linearithmic two-dimensional
Fast Fourier Transform achieving 92-97% of the accuracy of
BERT[15], but training 80% faster on GPU and 70% faster on
TPU. We build on FNet to introduce FNETCOMPRESSION
and add further compression layers to enhance efficiency.

3. DATASETS

Aiming for a fair comparison, we test FNETCOMPRESSION
in existing gene-expression prediction setups. Specifically,
we use the dataset of sequences introduced in Xpresso [2],
which counts 18,377 genes. For each gene, Xpresso releases:
1. the DNA sequence (20,000 bp long); 2. the half-life fea-
tures (that estimate the time required for degrading 50% of
the existing mRNA molecules [2]) which are embedded in a
vector of 8 real numbers for each gene; 3. the expression
value, which is the label to be predicted. Moreover, both the
validation and test set are obtained by sampling at random
1000 genes from the train set. These DNA sequences are
arrays of nitrogenous bases extracted from the human refer-
ence genome. Moreover, the neighborhood of the Transcrip-
tion Start Site (TSS) contains the most useful information for
the prediction of gene expression [14]. Therefore, all the se-
quences are extracted and centered with respect to the TSS
and contain the 10kbp upstream and downstream of it. The
locations of about 15k TSS have been downloaded from the
FANTOM5 consortium’s UCSC data hub (Lizio et al.) [16].
For the remaining genes, Xpresso considered as TSS, among
all the transcripts for each gene, the start coordinate of the
one with the longest Open Reading Frame [17], followed by
the longest 5’ Untranslated Gene Region, followed by the
longest 3’ Untranslated Gene Region was selected [18]. The
gene expression values were retrieved from the Epigenomics
Roadmap Consortium [19]. In particular, the values were re-
trieved in a tabular format of normalized expression values for
protein-coding genes across 56 tissues and cell lines obtained
by RNA-seq data 2.

In addition to Xpresso’s dataset, we perform experiments
on a Controlled Test Bench (CTB) that removes the half-life
features but relies on longer sequences, i.e., 65,536 bp. The
TSS locations are downloaded by the FANTOM5 consor-
tium’s UCSC data hub (Lizio et al.) [16], and for the genes
that are not covered, we decided to take the start coordinate
of the longest transcript. CTB uses the same Xpresso target
labels but different splits, built as follows. Chromosomes 8
and 10 were used for the test and validation splits, respec-
tively, and the remaining chromosomes were used for the

2The preprocessing foresees the averaging among the tissues, ending up
with one expression value per gene. After the aggregation, steps the values
are then processed with a log-transformation (ŷ = log10(y + pseudocount),
pseudocount=0.1) to reduce the right skew of the labels’ distribution.



training set.3 The resulting CTB training, validation, and test
sets count 16,832, 683, and 618 sequences, respectively.

4. PROPOSED METHOD

This paper presents FNETCOMPRESSION, a novel method for
gene expression level prediction. FNETCOMPRESSION uses
a convolutional sequence embedding and a transformer en-
coder. The latter is composed of a non-parametric 2D Dis-
crete Fourier Transform [20, 13], a subsequent low-pass fil-
ter to reduce the sequence length up to 95%, and an MHA
layer for optimizing the final information routing.4 The model
takes as input DNA sequences tens of thousands of nitroge-
nous bases long (and optionally the half-life features vector,
concatenated after the tanh pooler) and gives as output a real
number that quantifies the gene expression level.

4.1. Sequence Embedding

As standard transformers handle sequences shorter than a
thousand items [5], we first need to embed the input into a
shorter sequence.

Unlike prior work using one-hot encoding [2, 7], we use
an initial embedding layer to represent DNA basis as dense
vectors. Next, two 1D convolutional layers with different
kernel sizes (kernel1=6, kernel2=9) transform the sequence.
Note that different kernels capture different local patterns
from the sequence. Convolutional outputs are concatenated
and projected via a dense layer to recombine the information,
and a skip-connection [21] is used to facilitate gradient back-
propagation. Next, we apply a 1D Average Pooling, i.e., the
first compression step, Batch Normalization [22], and sum
absolute sinewave Positional Encodings [5]. Note that empir-
ical experiments revealed Batch Normalization to be crucial
for sequence embedding. We hypothesize this layer improves
numeric stabilization before the addition of positional infor-
mation, ensuring proper weighing of semantic and positional
information.

4.2. DFTCompression

The output of the sequence embedding stage is fed to the
DFTCompression block, which learns long-range patterns
and further compresses the input sequences.

First, we apply a 2D DFT and retain only the real part
[13]. By a first approximation, the resulting sequence repre-
sents the same signal in the “frequency” domain. Using this
time-frequency intuition, we apply a low-pass filter—i.e., the
second and most prominent compression step—as follows.
We shift the zero-frequency component of the sequence to

3Genes have different lengths, and extracting a fixed-size window of base
pairs can result in extracting the information of multiple genes. Stratifying
on chromosomes prevents any overlap between training and test sequences..

4Code and data are available at https://github.com/
vittoriopipoli/FNetCompression.

the center of the sequence and cut out symmetrically the out-
ermost positions. Our results have shown that we can push
this compression to remove up to the 95% of the sequence
while retaining most of the prediction accuracy. The output of
the compression block is prepended with a special token and
fed to a MHA.5 The final part of the network consists of two
dense layers with a ReLU activation function each and a final
neuron that represents the output of our regression model.

5. RESULTS

We evaluated the learning capability of FNETCOMPRESSION
compared to Xpresso’s model. Then, we tested generalization
to longer sequences by reducing the pooling size on Xpresso’s
dataset and using the long sequences of our CTB. We com-
pared FNETCOMPRESSION to four different baseline config-
urations: 1) the sequence embedder without any transformer
encoder block, 2) FNet 1 0 which has one DFT block and
no MHA blocks, 3) FNet 1 1 which has one DFT block and
one MHA (i.e., with no compression or special tokens, sim-
ilar to [13]), and 4) a Transformer with two encoder blocks.
All these models are obtained by removing the DFTCompres-
sion block from the backbone depicted on the left in Figure4
and modifying the blocks of the totem pole that follow the
concatenation of the special token. Moreover, we provide the
study of the computational complexity paid by the models,
the attention maps, and gradient x input analysis.

Confidence intervals have been computed with 14 runs per
experiment, a confidence level 0.95, the unbiased standard de-
viation estimator, and t-student distribution.

5.1. Training details

All the methodologies have been fitted employing the Adam
optimizer[23] exploiting a warm-up step scheduler[5]. The
loss metric adopted is Mean Squared Error (MSE) and the test
metric is R2. The compression rate of FNETCOMPRESSION
is always set to 95%. All the MHA blocks have four heads.
Refer to our github for the rest of the hyperparameters. We
adopted Google’s Tesla T4 and TPU as hardware resources.

5.2. Performances on Xpresso Dataset and CTB

Here, we compare FNETCOMPRESSION (§4.2) with Xpresso’s
model [2] on their dataset. Xpresso’s gene prediction values
have been the authors’ code [24]. As shown in Table 1,
FNETCOMPRESSION and FNet 1 1 provide the best results
even if FNETCOMPRESSION reduces the input sequences
length of 95%. Experiments on CTB dataset show that FNET-
COMPRESSION outperforms FNet 1 1 with sequences long
three times Xpresso’s ones.

5Using starting special tokens is commonplace in Computer Vision and
Natural Language Processing. The token is often used to summarize the
sequence.

https://github.com/vittoriopipoli/FNetCompression
https://github.com/vittoriopipoli/FNetCompression
https://github.com/vittoriopipoli/FNetCompression


Dataset Method Low CI Mean CI Upp CI

Xpresso

Xpresso 0.5593 0.5668 0.5743
Seq. Emb. 0.5343 0.5422 0.5501
FNet 1 0 0.5567 0.5604 0.5641
FNet 1 1 0.6121 0.6183 0.6245

FNetComp. 0.6076 0.6133 0.6190

CTB
FNET 1 1 0.5786 0.5859 0.5931

FNetComp. 0.5944 0.6006 0.6068

Table 1. Gene expression R2 on the test set of the Xpresso’s
dataset and CTB (0.95 confidence levels).

Method Pool
Size

2DFFT
O(nlogn)

MHA
O(n2)

Relative
perf.

Time per
batch [s] Speed up

Transformer

128

- 156x2 - 36 -
FNet 1 0 156 0 85% 32 +11%
FNet 1 1 156 156 93% 34 +6%

FNetComp. 156 8 93% 32 +11%

Transformer
32

- 626x2 - 60 -
FNet 1 1 626 626 89% 48 +25%

FNetComp. 626 34 93% 32 +87.5%

Table 2. Speed up and performance comparisons of FNET-
COMPRESSION and FNet 1 1 with a classic Transformer ar-
chitecture on Xpresso’s dataset using a Tesla T4 GPU.

5.3. Computational Complexity

We studied the computational complexity of the tested mod-
els. Table 2 reports the results. FNETCOMPRESSION’s
speed-up over FNet 1 1 increases with the input sequence
length, as an expected result of our compression stages.
Moreover, FNETCOMPRESSION performance remains stable
unlike FNet 1 1.

We do not report the comparison of execution times on the
CTB dataset due to out-of-memory errors in the testing envi-
ronment. Preliminary tests on TPU hardware proved FNET-
COMPRESSION as the fastest model but by a smaller margin.

5.4. Attention and Gradient x Input Analysis

Attention plots can reveal some interesting patterns in trans-
former architectures’ data modeling. In particular, the atten-
tion patterns of the Multi-Headed Attention block that follows
the DFTCompression block of our model can be examined.
As we can see in Figure 2, it is possible to spot vertical pat-
terns in the middle of the matrix. Vertical patterns occur when
all the elements of a sequence are paying attention to the same
location. Therefore, most of the elements are paying attention
to the regions that embed the lowest frequencies.

When FNETCOMPRESSION applies a compression factor
of 95%, only the 5% of the sequences in processed by the sub-
sequent Multi-Headed Attention layer. Hence, we computed
the Gradient x Input to prove that all the elements of the orig-
inal sequence take part in the loss contribution. Results are

Fig. 2. Attention weights in FNETCOMPRESSION trained
on CTB. Attention values expressed (first row) and received
(last column) by the special token are magnified and min-max
normalized.

Fig. 3. Gradient x Input attribution obtained by feeding
FNETCOMPRESSION with the CTB test gene VPS13B.

shown in Figure 3, and it is possible to notice that all the ni-
trogenous bases have a significant contribution and the signal
follows a sinusoidal pattern.

6. CONCLUSION

This work presented a transformer-based[5] model, called
FNETCOMPRESSION, for predicting gene expression levels
from raw DNA sequences exploiting a crucial sequence com-
pression. The main challenge of this work is to deal with
the quadratic complexity of the attention mechanism by de-
signing a transformer-based architecture that exploits a 2D
DFT that can analyze and compress long DNA sequences
even with few computational resources. Results proved that
FNETCOMPRESSION [4.2] outperforms Xpresso on their
dataset. Hence, Xpresso’s authors claim to explain up to
the 59% of the variation of gene expression levels, while
FNETCOMPRESSION explains up to 62%. The compari-
son between FNETCOMPRESSION and FNet 1 1 shows that
FNETCOMPRESSION is capturing all the useful information
even if it is discarding the 95% of the sequences. On the
other hand, FNet 1 1 become unstable when its input length
grows. Finally, FNETCOMPRESSION is the fastest algorithm
of these experiments. For future works, we suggest find-
ing better ways for exploiting the 2D DFT and compression
strategies.
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