From Recurrent Models to the advent of Attention A Recap

Giuseppe Attanasio

Papers We Love Milano. February 15, 2023

Hey there!

- Postdoc @ MilaNLP, Bocconi, Milano
- Studying Transformers to
 - Improve Hate Speech Detection
 - Interpret their decision process
 - Bridge vision and language worlds

gattanasio.cc @peppeatta

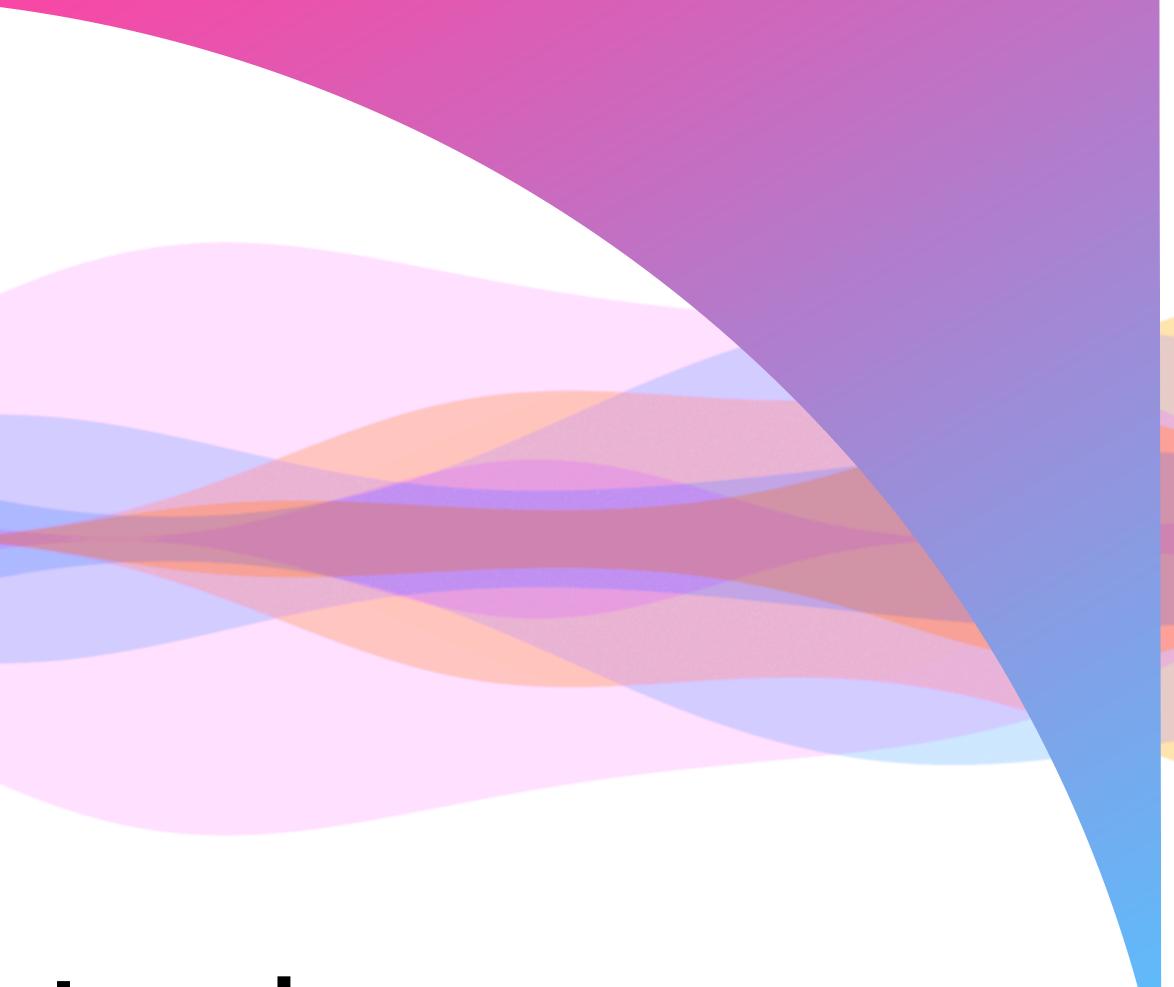
ChatGPT

Transformer

Attention

Recurrent Neural Network

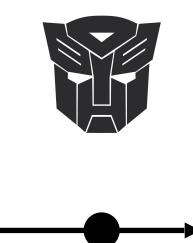
Public Perception



We'll focus on intuitions. Many further technicalities are left aside.

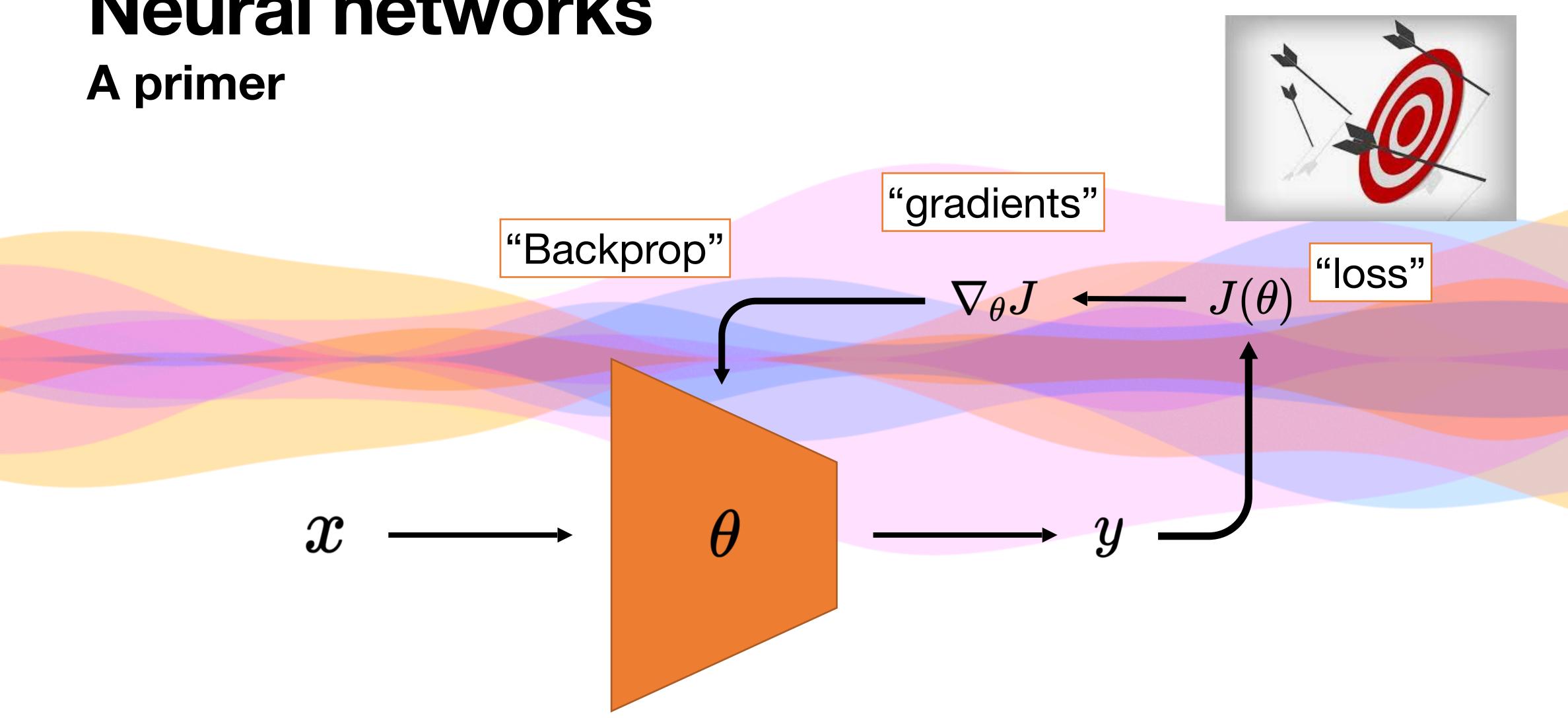
From Recurrent Models to the advent of Attention

An NLP historical walkthrough.



Attention Is All You Need. Waswani et al.

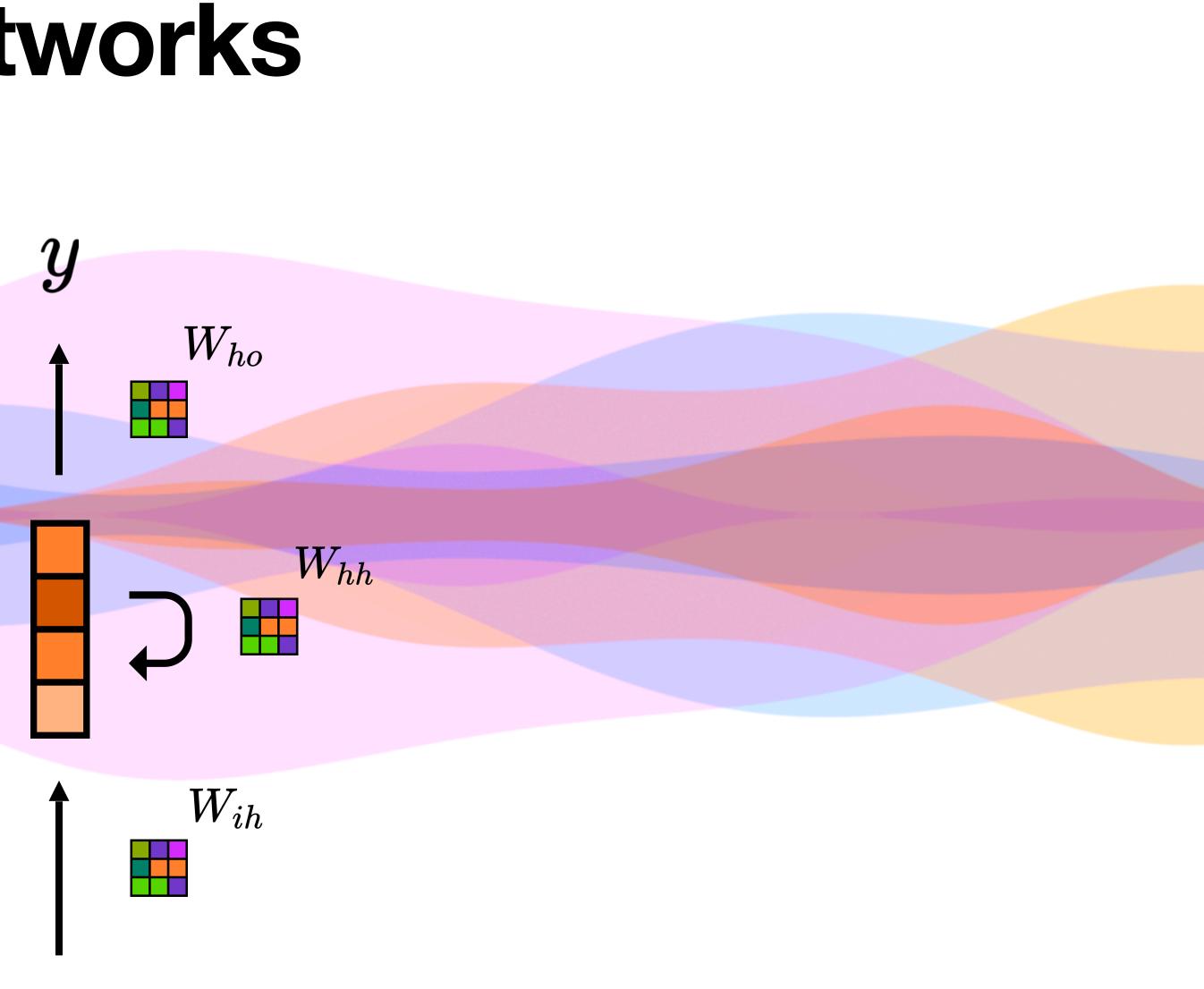
Neural networks



Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986. Learning representations by back-propagating errors. Nature

Recurrent Neural Networks

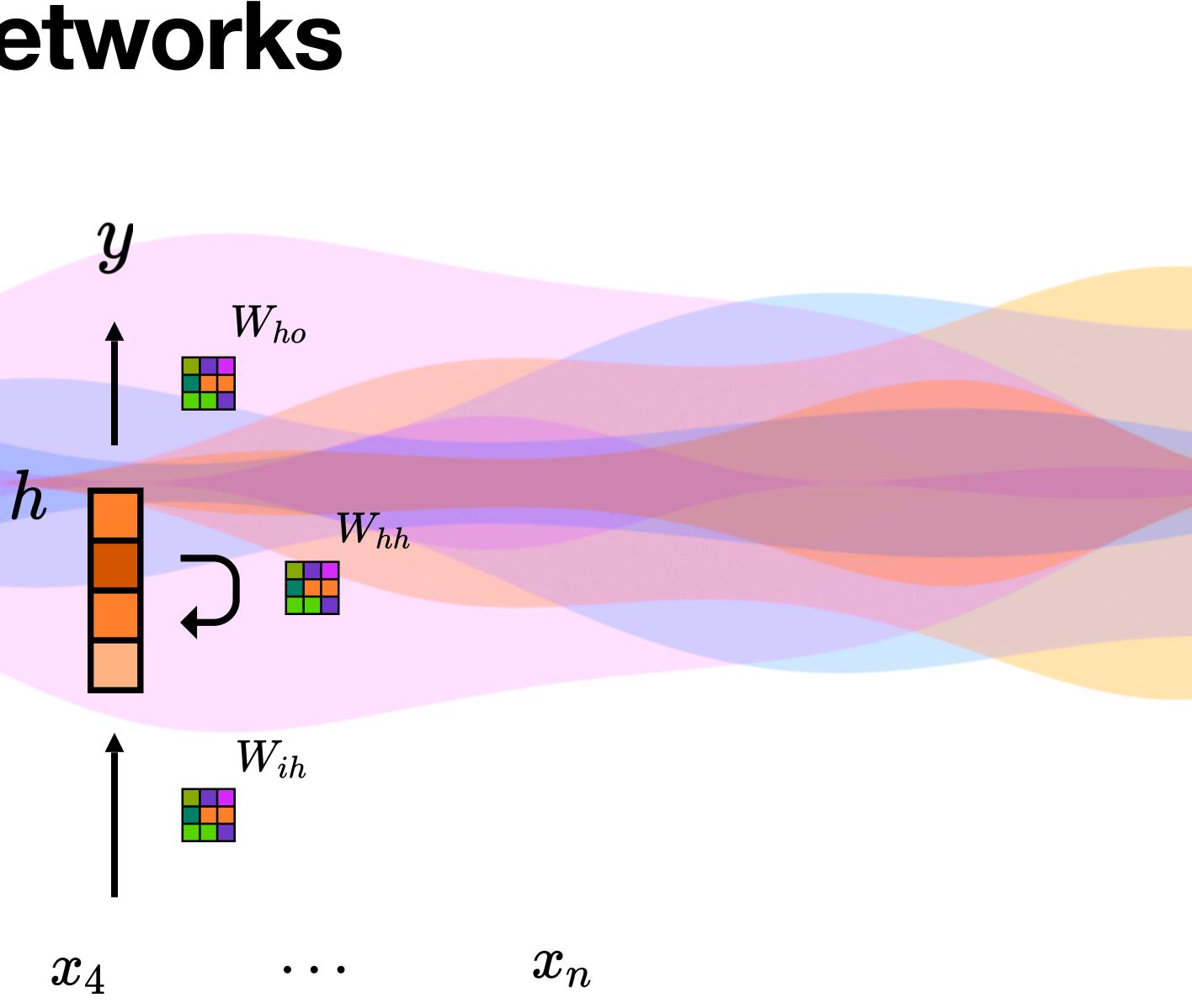
h



 $\boldsymbol{\mathcal{X}}$

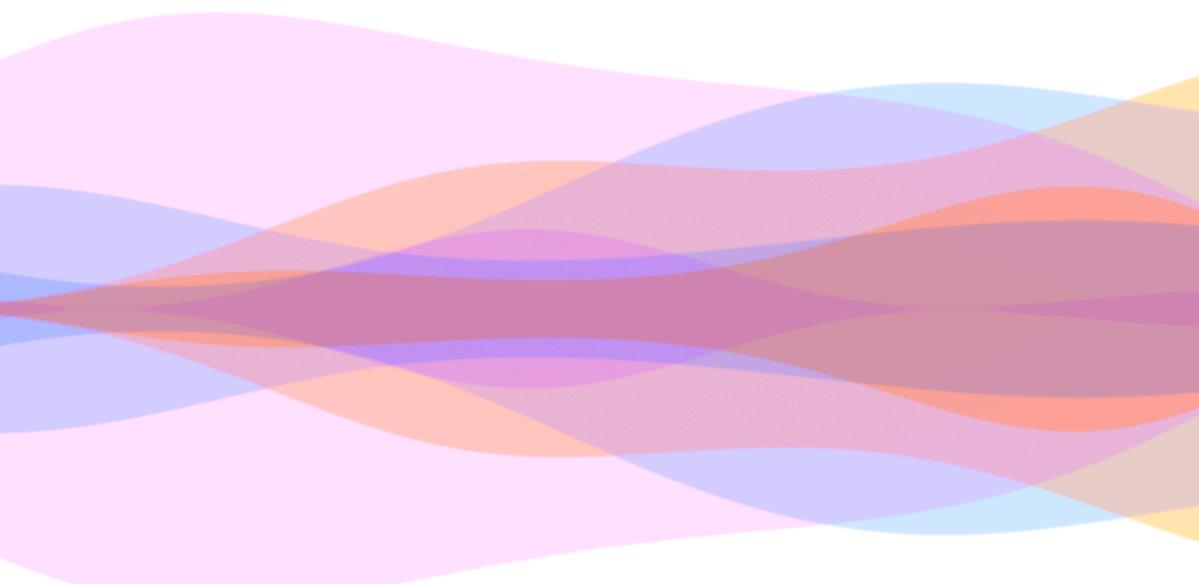
Recurrent Neural Networks

 x_2

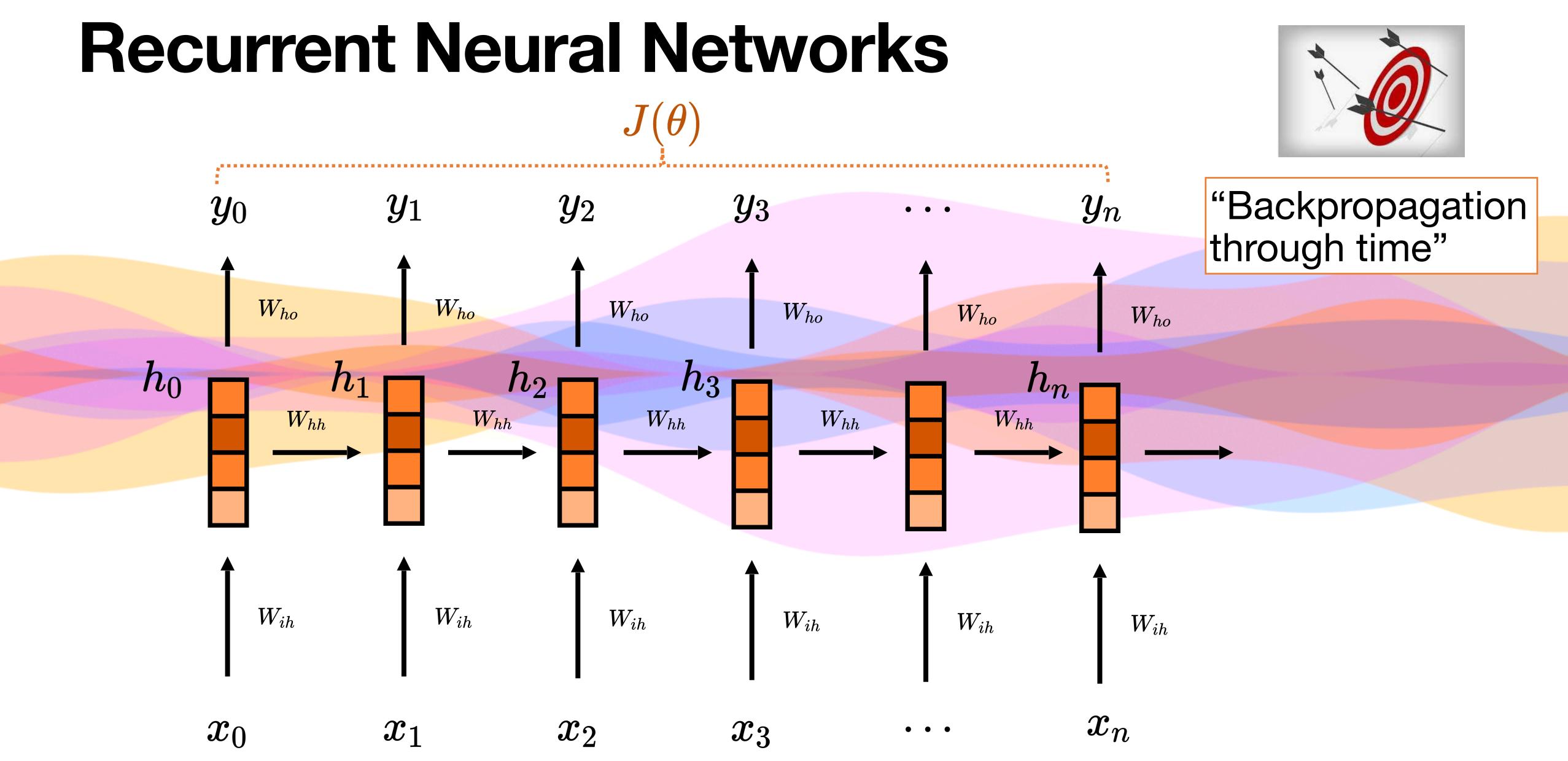


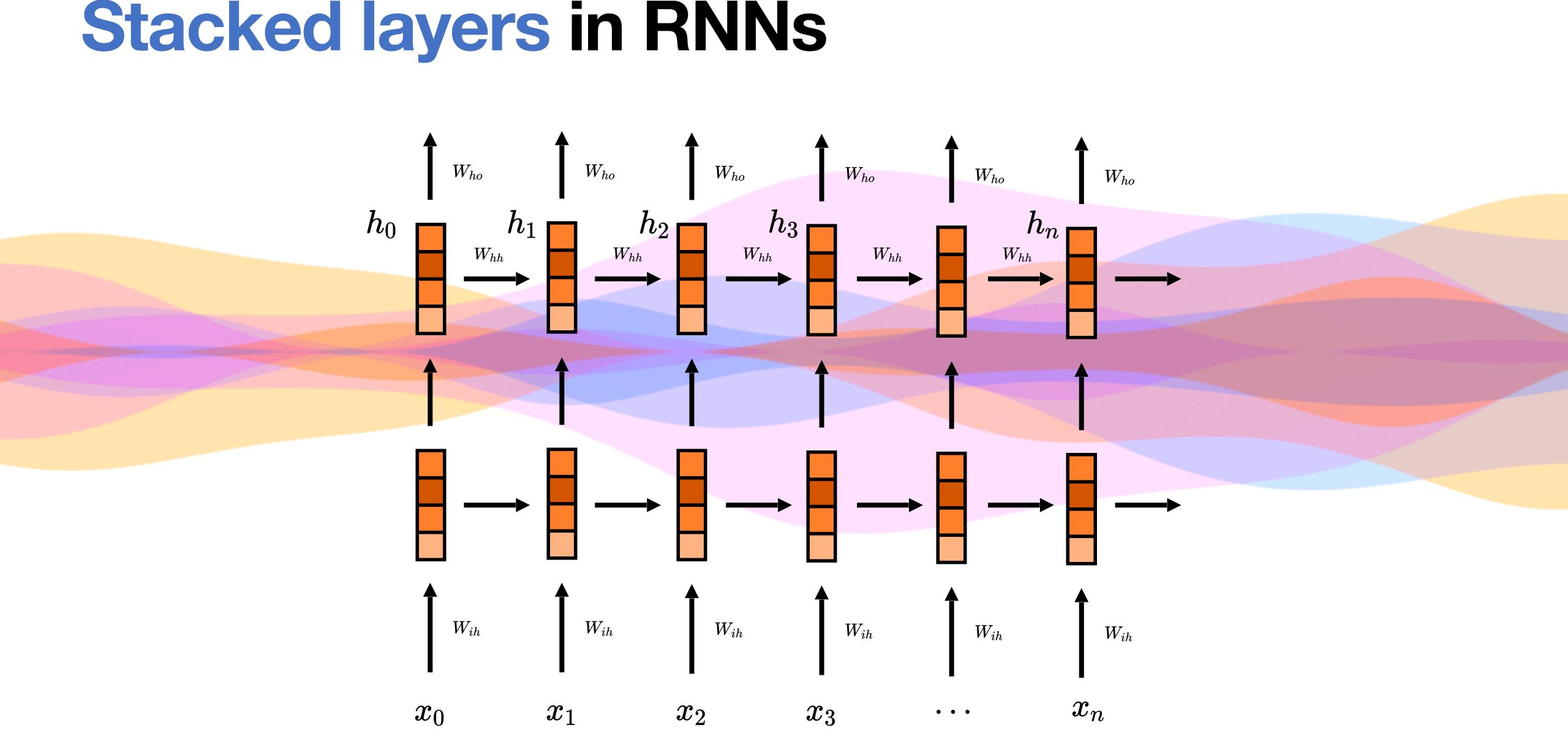
Recurrent Neural Networks y_0 W_{ho} h_0 W_{hh} W_{ih}

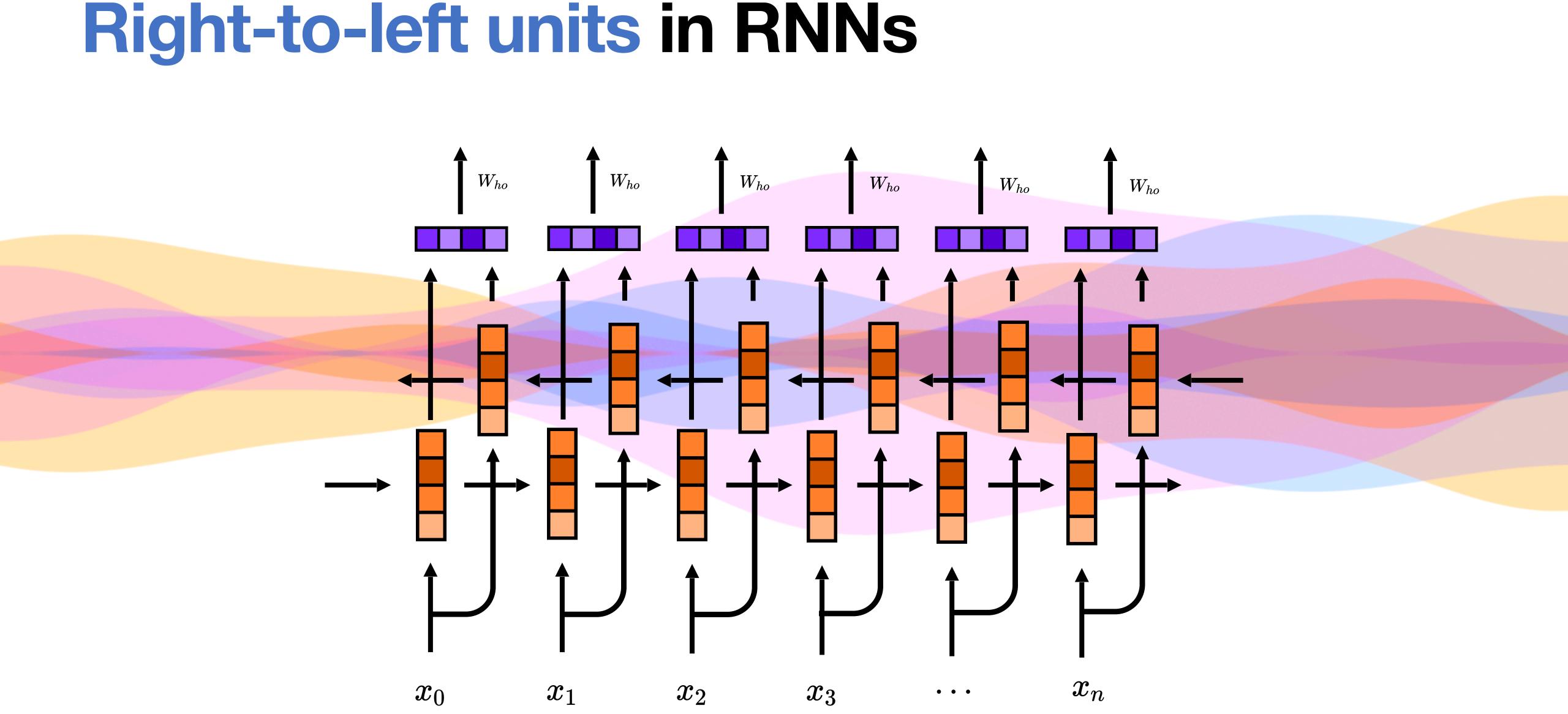
 $x_0 \qquad x_1 \qquad x_2$



 x_3







Rocket science?!?

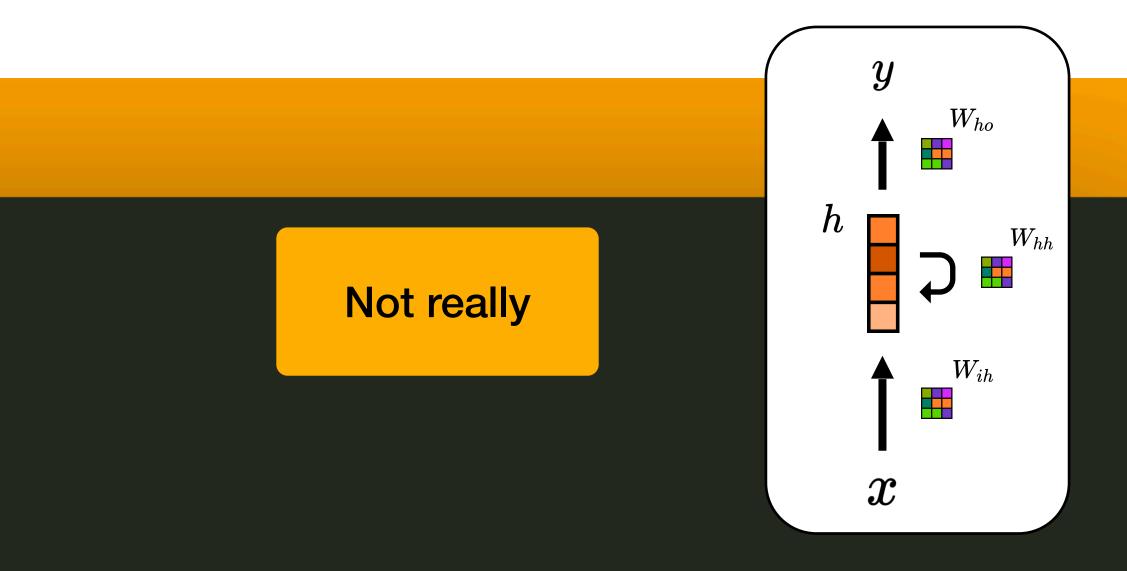
Photo by Mikhail Vasilyev on Unsplash


```
import torch
```

```
input_size = 8
hidden_size = 16
num_layers = 2
```

```
# Define input and initial hidden
in_seq = torch.randn((5, 1, input_size)) # sequence of 5 items
h0 = torch.randn((num_layers, 1, hidden_size)) # one initial hidden per layer
```

```
# Compute "one step"
yn, hn = rnn(in_seq, h0)
```



rnn = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)

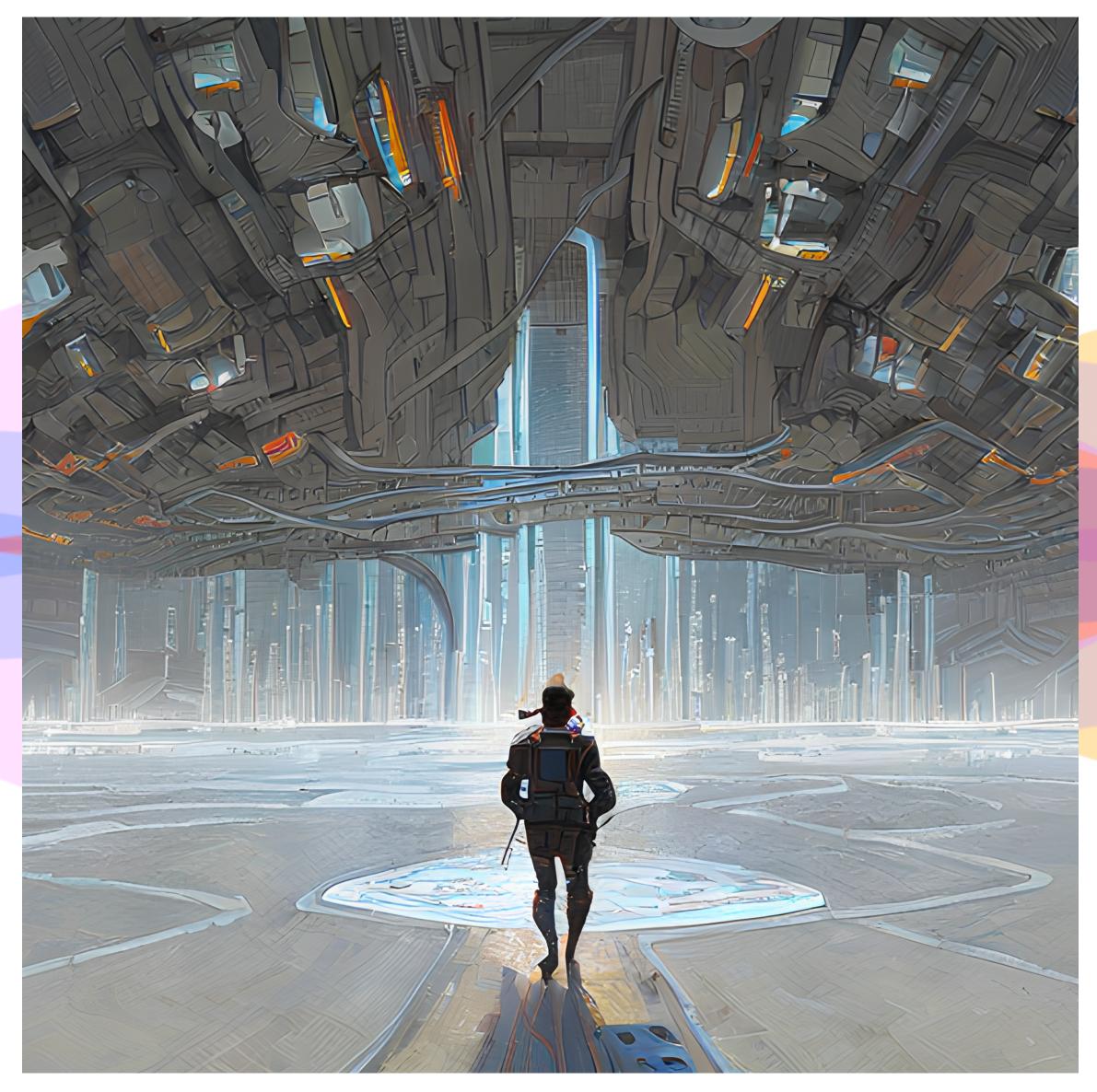
Pros & Cons

- Weights are shared across time
 - the number of parameters is low (3 matrices in Vanilla RNN)
 - all inputs get equal treatment
- Sequences of arbitrary length
 - theoretically, each input influences all the future outputs no matter of the distance
- The architecture is **flexible**
 - We can stack layers or add a right-to-left flow
- Recurrence == no parallelization through "time"
- Although it's there, the information flow gets cut by vanishing gradients

Pascanu, R., Mikolov, T. and Bengio, Y., 2013, February. On the difficulty of training recurrent neural networks. In International conference on machine learning

14

Using RNNs



Language modeling

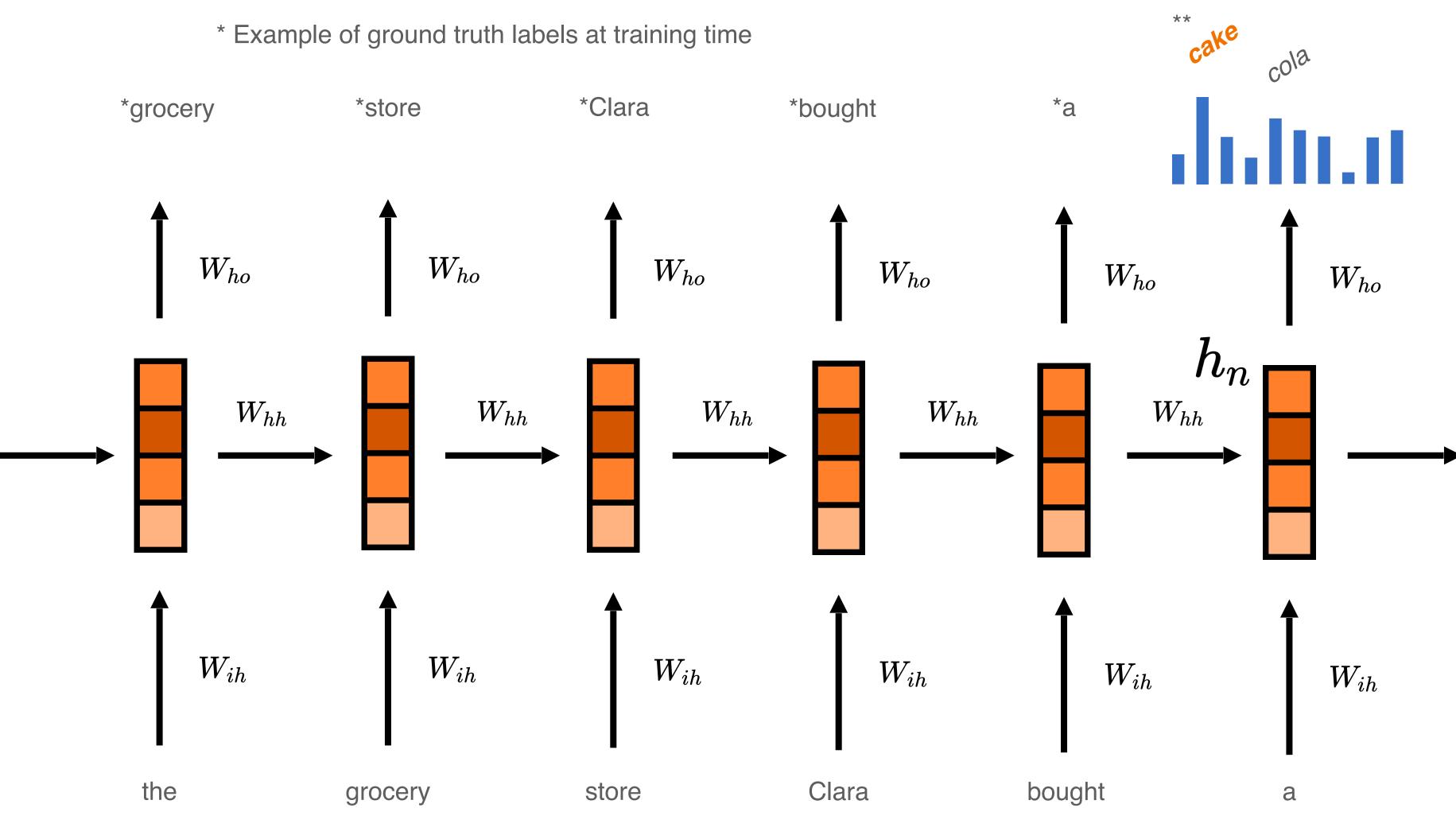
speaking, a *token*) given a context.

Modeling language entails predicting what's the most likely item (generally

Back at the grocery store, Clara bought a _____

Grocery stuff should be more likely to follow we are modeling a probability

RNNs for Language Modeling

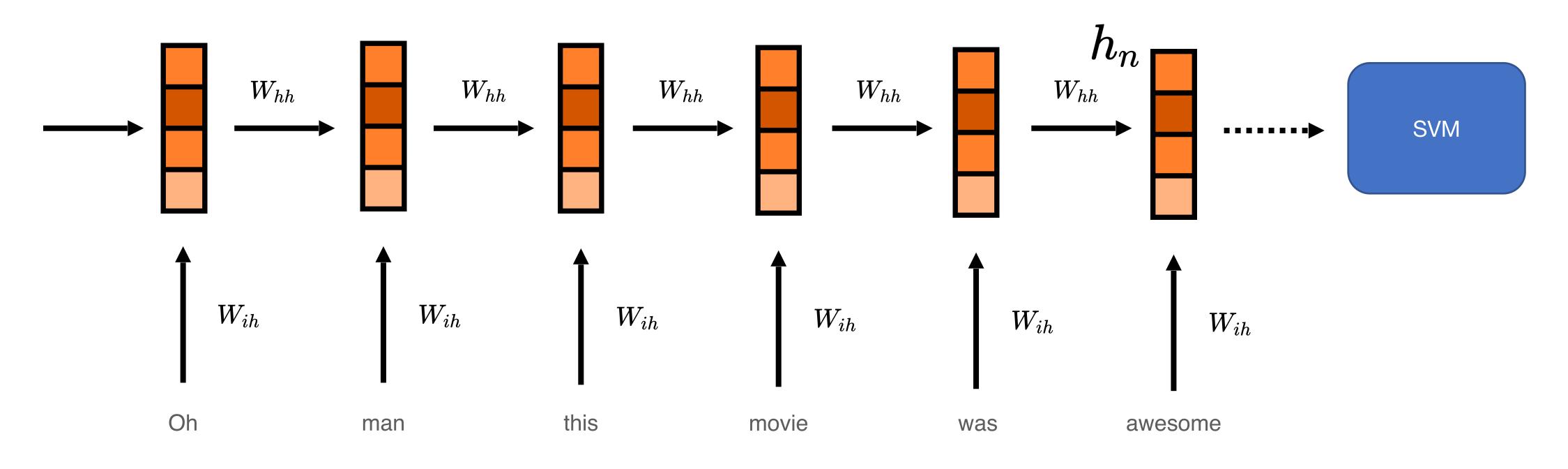


A. Karpathy. Minimal NumPy implementation. https://gist.github.com/karpathy/d4dee566867f8291f086

** Example of PDF at inference time

RNNs for Sentiment Analysis

We can use the network as an "encoder" for further downstream tasks.



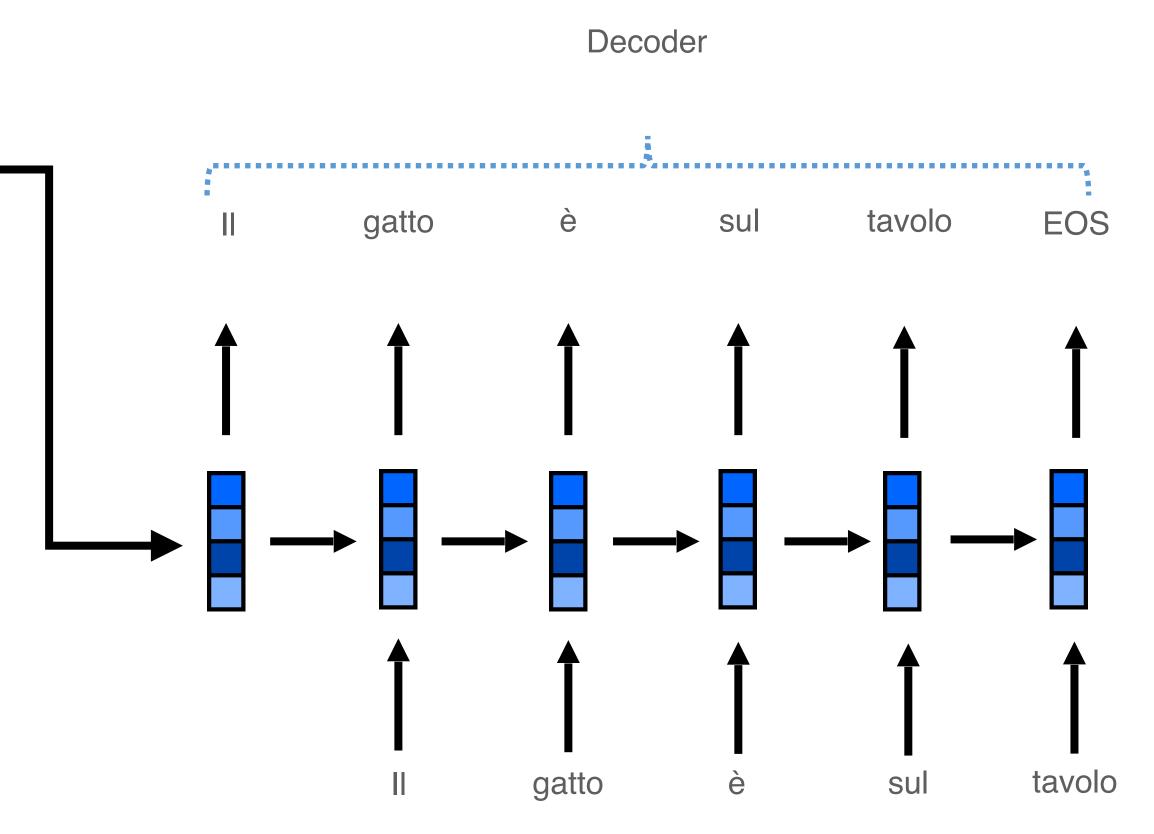
Actually, you can use *all* the hidden states (e.g., by concatenating them)

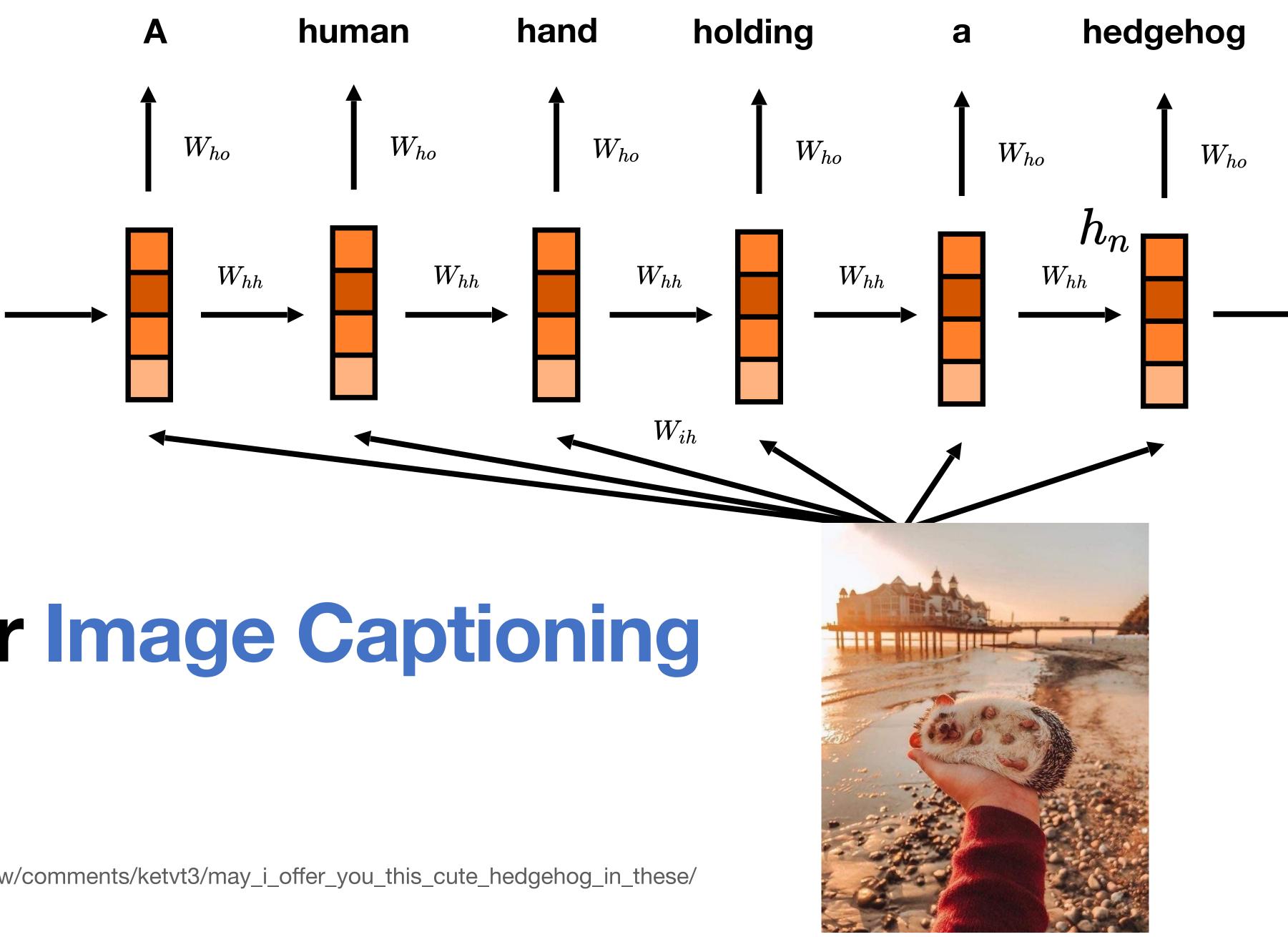
RNNs for Neural Machine Translation



- We add to the vocabulary an End Of Sentence (EOS) token
 - Sentences of different length!

Sutskever, I., Vinyals, O. and Le, Q.V., 2014. Sequence to sequence learning with neural networks. Advances in neural information processing systems Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation





RNNs for Image Captioning

https://www.reddit.com/r/aww/comments/ketvt3/may_i_offer_you_this_cute_hedgehog_in_these/

Generating Stories about Images

https://medium.com/@samim/generating-stories-about-images-d163ba41e4ed

Generated story about image Model: Romantic Novels

"He was a shirtless man in the back of his mind, and I let out a curse as he leaned over to kiss me on the shoulder.

He wanted to strangle me, considering the beatiful boy I'd become wearing his boxers."

Dealing with long-range dependencies

Gated RNNs

Yesterday, I visited my grandma and I brought there a bunch of stuff. Also, I installed that Alexa device as you asked. I have strong doubts that it will work but when you're ready, we can try to video-call

- If the information flow gets cut by vanishing gradient
 - Add explicit memory
- They idea of explicit memory and learned gates is dated 1997! computation, 9(8), pp.1735-1780.

• Let the network learn how to use it (i.e., when to forget, what to remember)

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural

Gated RNNs: LSTM

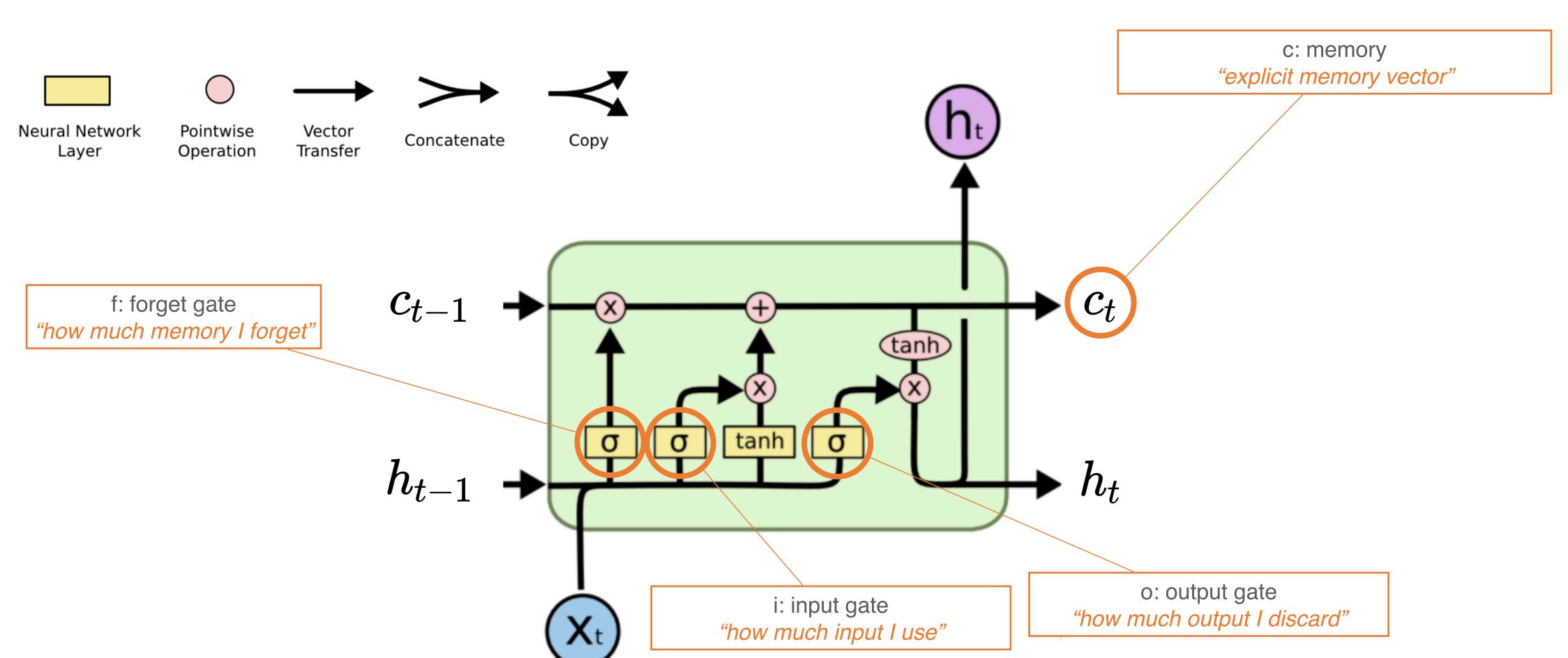


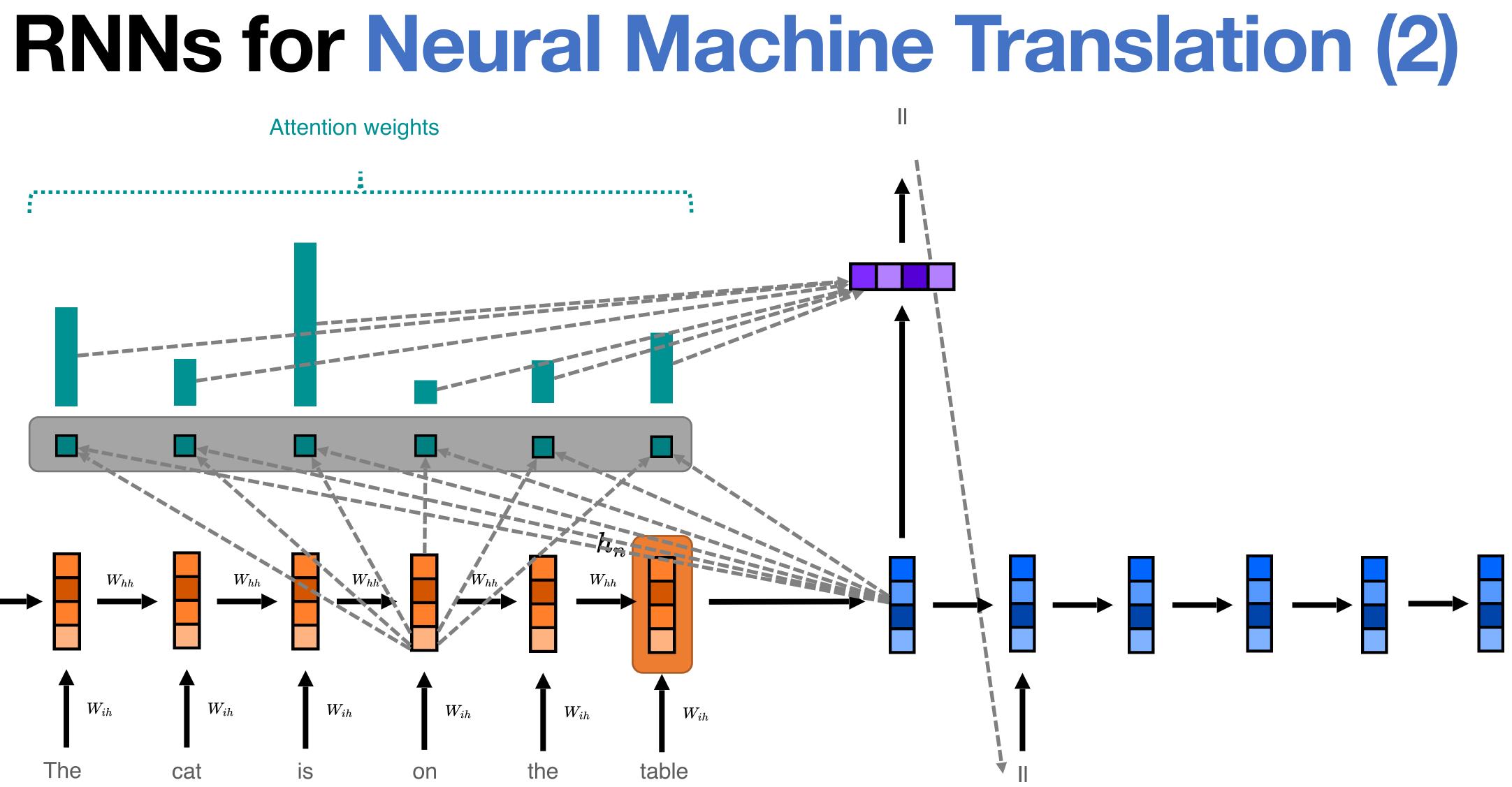
Photo by <u>Samantha Gades</u> on <u>Unsplash</u>

Attention

Attention [~2014-2016]

- Motivated by the human ability to focus on salient information and discard the rest
 - ... or the Cocktail party problem

- A groundbreaking innovation
 - Direct connection to let information (and gradients) flow
 - Foundational in Transformers



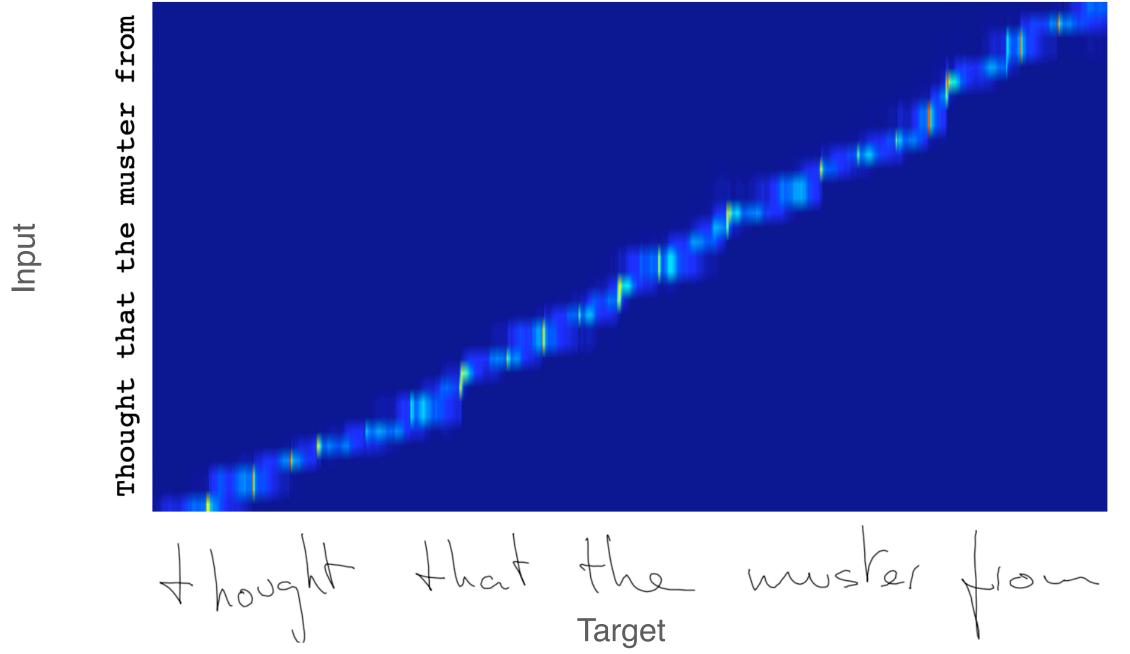
Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation by jointly learning to align and translate.

Generating sequences with RNNs

- Architecture: encoder-decoder LSTMs
- Task: generate handwriting corresponding to input text

The top line is real, the rest are samples from the decoder network

Graves, A., 2013. Generating sequences with recurrent neural networks.



Attention [2016-today]

- Attention Is All You need. Waswani et al.
- Introducing the Transformer
 - No more recurrent units
 - Fundamentally, a machine translation paper
 - Language modeling using attention only
- Building block of modern language models
 - BERT, GPT-*, ViT, Wav2Vec, ...

Vaswani et al, 2017. Attention is All You Need.

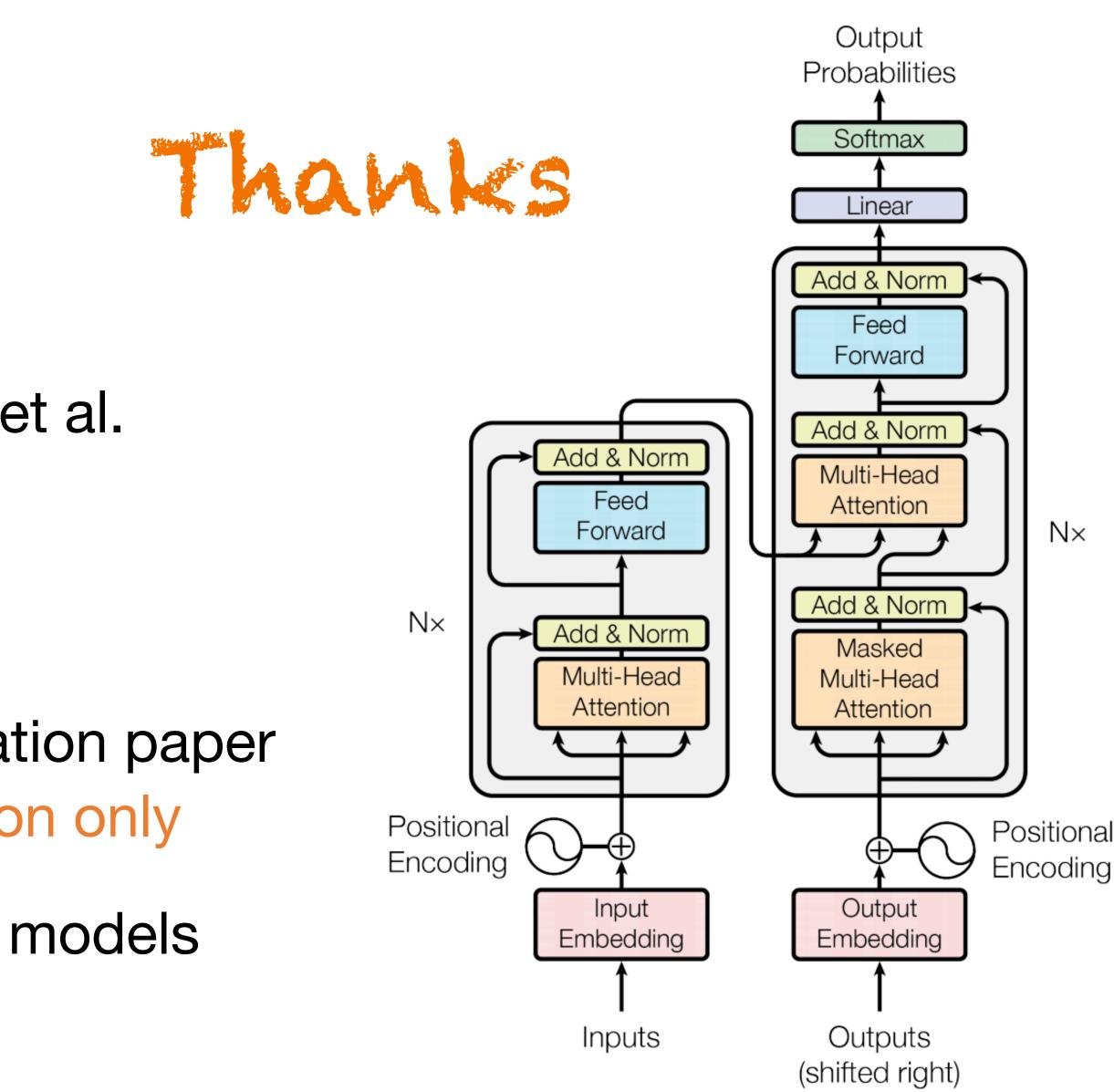


Figure 1: The Transformer - model architecture.

