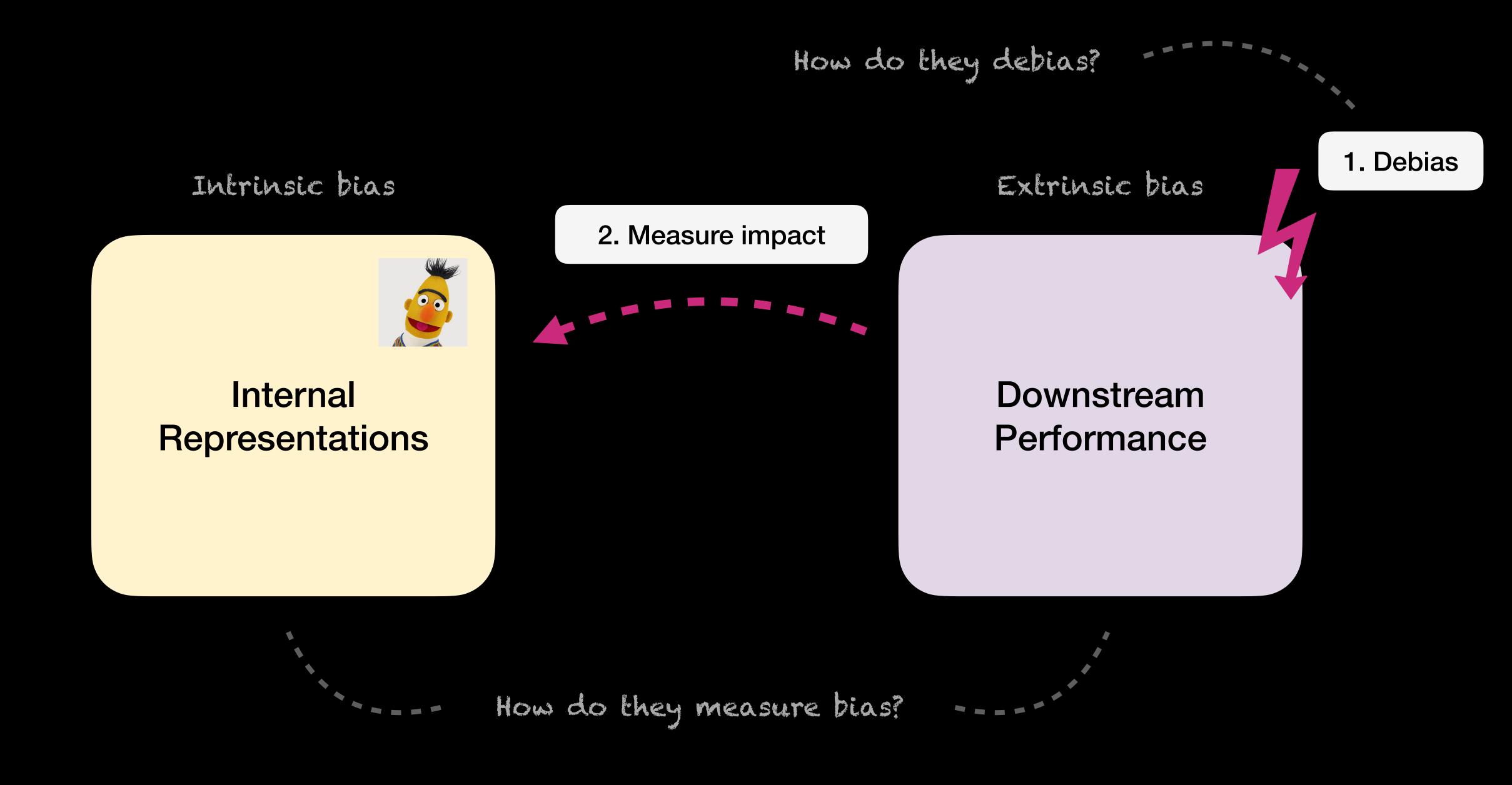


How Gender Debiasing Affects Internal Model Representations, and Why It Matters

Hadas Orgad, Seraphina Goldfarb-Tarrant, Yonatan Belinkov


Presented by
Giuseppe Attanasio

Date
October 13, 2022

Extrinsic vs. Intrinsic Gender Bias

- Intrinsic bias
 - Internal representations (WEAT and co.)
- Extrinsic bias
 - Downstream performance (Group parity and co.)

"Our goal is [...] understanding the relationship between a model's internal representations and its extrinsic gender bias by examining the effects of various debiasing methods on the model's representations"

Intrinsic bias

Internal Representations

 Contextualised Embedding Association Test (CEAT)

Gun and Caliskan, 2020

- Compression
 - Predicting gender from model's representations
 - Minimum Description Length (MDL) probe

Voita and Titov, 2020

Intrinsic bias

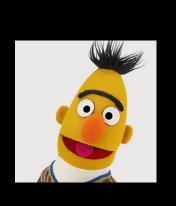
Internal Representations

 Contextualised Embedding Association Test (CEAT)

Gun and Caliskan, 2020

- Compression
 - Predicting gender from model's representations
 - Minimum Description Length (MDL) probe

Voita and Titov, 2020


Extrinsic bias

Downstream Performance 1. Debias

Occupation Classification: (TPR(teacher|men) -TPR(teacher|women)).abs()

- TPR and FPR gaps ▼
 - 1) sum(gaps)
 - 2) Pearson(class gap, women employment) (from labour statistics)
- Independence \blacktriangleright $KL(P(r|z=z), P(r)) \forall z \in \{M, F\}$
 - Separation \blacktriangleright $KL(P(r|y=y,z=z),P(r|y=y))\forall z\forall y$
- Sufficiency \bullet Wass(P(y | r = r, z = z), P(y | r = r))

Extrinsic bias

1. Debias

Scrubbing

- Remove "he", "she", "husband", etc.
- Balancing (over- or sub-sampling genders)
 - Stratified on class labels
- Anonymization (remove named entities)
- Counterfactual Augmentation

Examples

Occupation Classification

Original dataset

Britney currently works on CNN's newest primetime show. She has also written for the New York Times.

Scrubbing

_ currently works on CNN's newest primetime show. _ has also written for the New York Times.

Coreference Resolution

Original dataset

My sister is taking a painting class this summer, so she has been sharing the latest lesson with me.

Counterfactual augmentation

My brother is taking a painting class this summer, so he has been sharing the latest lesson with me.

Setup

- Occupation Classification
 - Bias in Bios
 - Probe: [CLS], gender from bio
- Coreference Resolution
 - FT: Ontonotes 5.0, T: Winobias
 - Probe: profession word, stereotypical gender
- RoBERTa, DeBERTa

The doctor called the nurse because he/she needed help

Compression!

- Compression captures variations on debiasing
- CEAT in CR shows no bias for unbiased models
- Superficial debiasing: effects on extrinsic don't match intrinsic

			Extrinsic								
Debiasing	Intrinsic		Before				After				
Strategy	Compression	CEAT	TPR (P)	FPR (S)	Sep	Suff					
Random	5.61*	0.12†	-	-	-	-	-				
Pre-trained	10.12	0.49^{*}	-	-	-	-					
None	4.12	0.22	0.76	0.08	0.33	9.45					
Oversampling	8.52*	0.29	0.73	0.09^{*}	0.31	8.32^{*}					
Subsampling	3.57	0.22	0.32^{*}	0.03^{*}	0.20^{*}	1.22*					
Scrubbing	1.70 *	0.23	0.70^{*}	0.06^{*}	0.30	4.93*					

(a) Occupation classification: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer, over 10 seeds per fine-tuned model and per retrained classification model.

			Extrinsic								
Debiasing	Intrinsic			Befor	After						
Strategy	Compression	CEAT	F1 diff	FPR (S)	Sep	Suff	F1 diff				
Random	0.83^{*}	0.12†	-	-	-	-					
Pre-trained	0.96	0.49*	-	-	-	-					
None	1.98	0.35	6.63	0.12	1.25	8.69					
Anon	2.07^{*}	0.31^{*}	7.26	0.13	1.34	8.82					
CA	1.50^{*}	0.27^{*}	2.30^{*}	0.05^*	0.54^{*}	1.67^{*}					
Anon + CA	1.54*	0.25*	2.42*	0.049*	0.56*	1.56*	2.86*	0.05*	0.59*	1.65*	

⁽b) Coreference resolution: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer, over 10 seeds per fine-tuned model and 5 seeds per retrained classification model.

Table 1: Results on both tasks. * marks significant reduction or increase in bias (p < 0.05 on Pitman's permutation test), compared to the non-debiased model (debiasing strategy None). The lowest bias score in each column is marked with **bold**. P = Pearson; S = Sum. † was computed only on 3 out of 10 tests for which CEAT's p < 0.05.

Compression!

- Compression captures variations on debiasing
- CEAT in CR shows no bias for unbiased models
- Superficial debiasing: effects on extrinsic don't match intrinsic
- Strength of bias restoration is predicted by compression

"After": fine-tune, freeze ROBERTa, fine-tune CLS head

			Extrinsic								
Debiasing	Intrinsic		Before				After				
Strategy	Compression	CEAT	TPR (P)	FPR (S)	Sep	Suff	TPR (P)	FPR (S)	Sep	Suff	
Random	5.61*	0.12†	-	-	-	-	-	-	-	-	
Pre-trained	10.12	0.49^{*}	-	-	-	-	-	-	-	-	
None	4.12	0.22	0.76	0.08	0.33	9.45	0.78	0.073	0.33	9.70	
Oversampling	8.52*	0.29	0.73	0.09^{*}	0.31	8.32^{*}	0.81^{*}	0.068^{*}	0.33	10.91^{*}	
Subsampling	3.57	0.22	0.32*	0.03^{*}	0.20^{*}	1.22 *	0.70^{*}	0.08^*	0.30^{*}	1.32^{*}	
Scrubbing	1.70*	0.23	0.70^{*}	0.06^{*}	0.30	4.93*	0.71^{*}	0.06^*	2.56 *	0.81*	

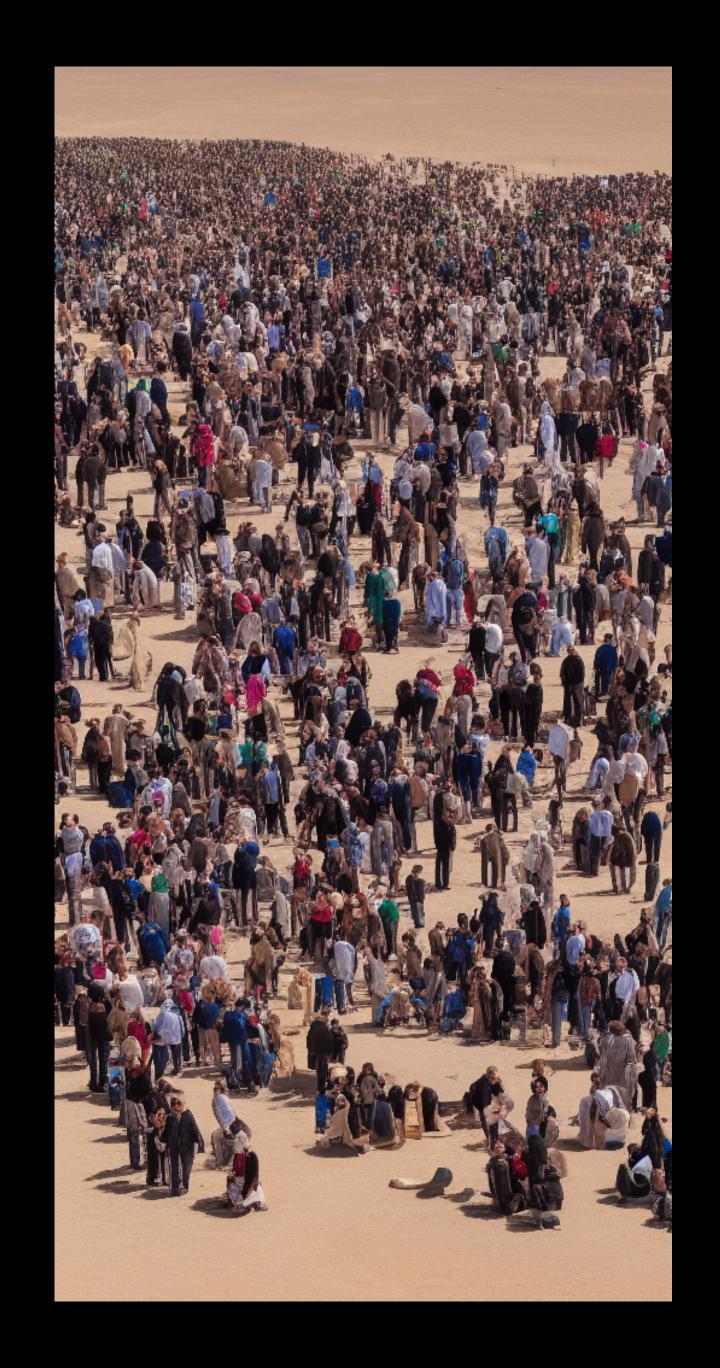
(a) Occupation classification: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer, over 10 seeds per fine-tuned model and per retrained classification model.

			Extrinsic							
Debiasing	Intrinsic			Befor	e	After				
Strategy	Compression	CEAT	F1 diff	FPR (S)	Sep	Suff	F1 diff	FPR (S)	Sep	Suff
Random	0.83^{*}	0.12†	-	-	-	-	_	-	-	-
Pre-trained	0.96	0.49*	-	-	-	-	-	-	-	-
None	1.98	0.35	6.63	0.12	1.25	8.69	6.07	0.11	1.19	7.35
Anon	2.07^{*}	0.31^{*}	7.26	0.13	1.34	8.82	7.42^{*}	0.13^{*}	1.34^{*}	8.66^{*}
CA	1.50^{*}	0.27^{*}	2.30^{*}	0.05^*	0.54^{*}	1.67^{*}	3.67^{*}	0.06^{*}	0.67^{*}	2.40^{*}
Anon + CA	1.54*	0.25*	2.42*	0.049*	0.56*	1.56*	2.86*	0.05*	0.59*	1.65*

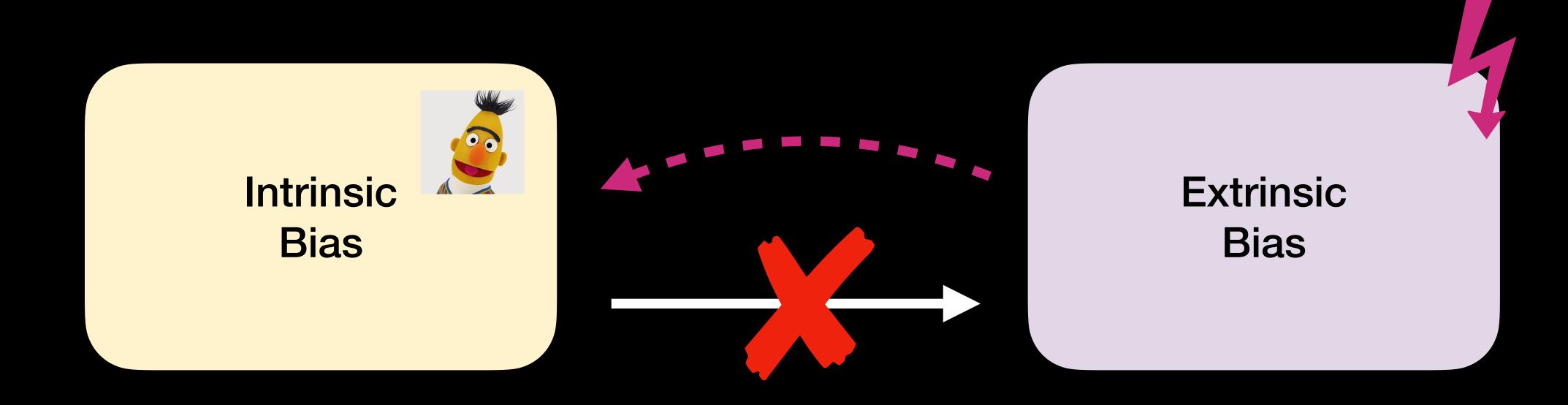
(b) Coreference resolution: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer, over 10 seeds per fine-tuned model and 5 seeds per retrained classification model.

Table 1: Results on both tasks. * marks significant reduction or increase in bias (p < 0.05 on Pitman's permutation test), compared to the non-debiased model (debiasing strategy None). The lowest bias score in each column is marked with **bold**. P = Pearson; S = Sum. † was computed only on 3 out of 10 tests for which CEAT's p < 0.05.

Correlation between Intrinsic and Extrinsic


- OC: correlations appears with Compression after retraining
- CR: correlation is high "before" and decreases "after"
- CEAT has low correlation

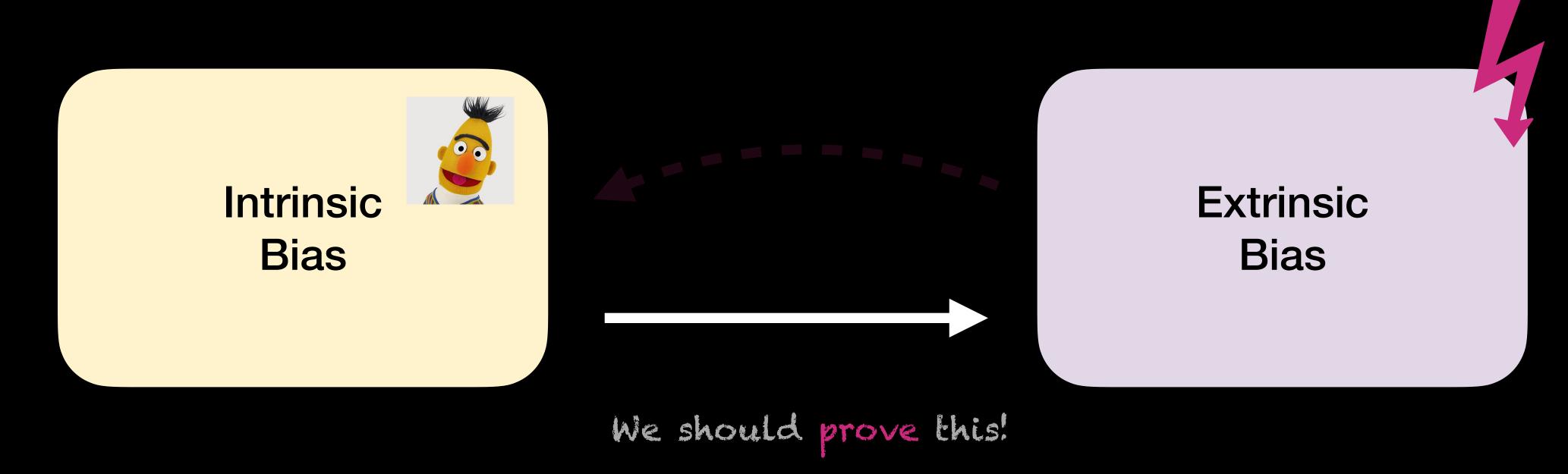
	~	upation C	lassificat R ² C		Coreference Resolution R^2 Compression R^2 CEAT				
Metric	Before After		Before	After	Before	After	Before	After	
F1 diff $(pro-anti)$	-	-	_	-	0.821	0.709	0.246	0.005	
TPR gap (P)	0.046	0.304	0.042	0.049	0.222	0.006	0.008	0.012	
TPR gap (S)	0.049	0.449	0.022	0.036	0.817	0.752	0.297	0.003	
FPR gap (P)	0.001	0.120	0.008	0.002	0.021	0.054	0.002	0.000	
FPR gap (S)	0.353	0.046	0.079	0.001	0.844	0.773	0.263	0.004	
Precision gap (P)	0.032	0.173	0.000	0.000	0.068	0.038	0.019	0.000	
Precision gap (S)	0.174	0.529	0.000	0.021	0.849	0.774	0.268	0.006	
Independence gap (S)	0.251	0.382	0.050	0.005	0.778	0.732	0.355	0.001	
Separation gap (S)	0.066	0.165	0.046	0.009	0.835	0.776	0.261	0.005	
Sufficiency gap (S)	0.202	0.567	0.040	0.034	0.825	0.753	0.287	0.002	


Table 2: Coefficient determination of the regression line taken on the compression rate or CEAT and each extrinsic metric, before and after retraining of the classification layer. P = Pearson; S = Sum.

Authors' take

- Compression (gender extractability) is a better indicator than CEAT for gender bias in NLP models
- High gender extractability and low extrinsic bias metrics means superficial debiasing
 - Bias is still "there", retraining restores it
- OP and CR have tell different stories

My take


But authors assume it all along...

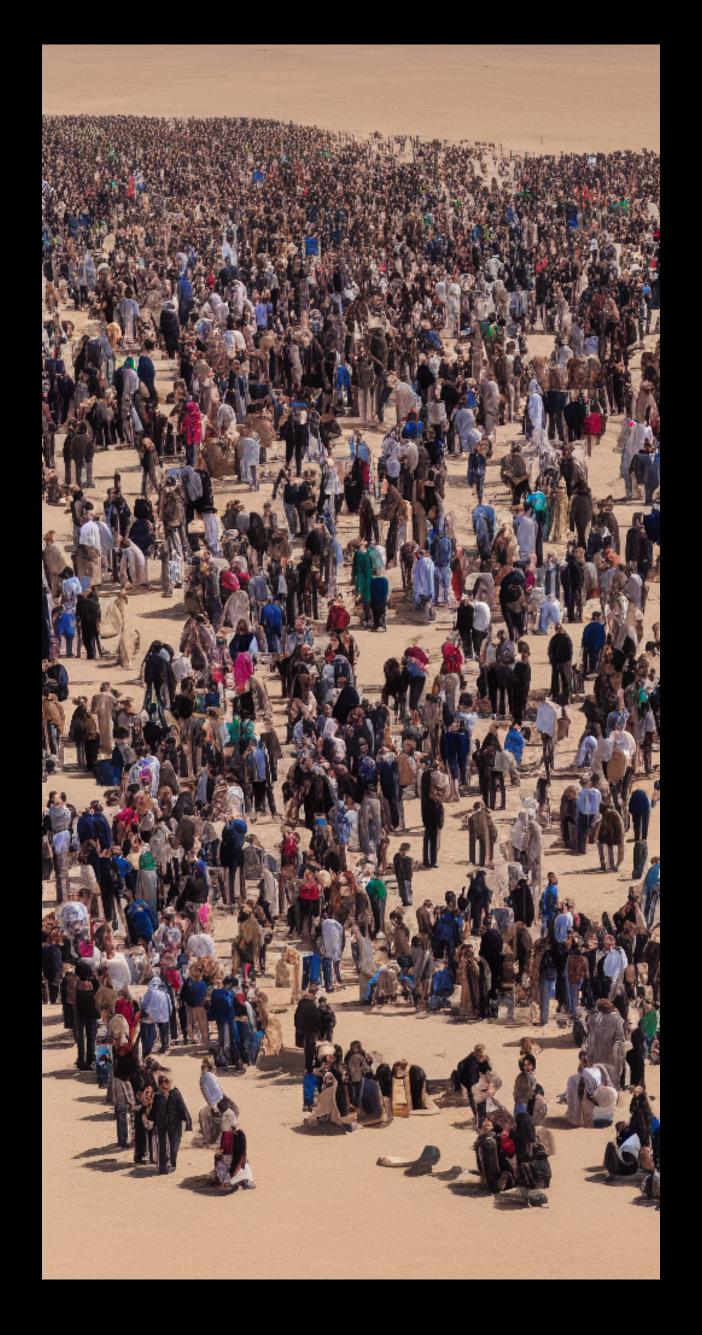
while not always in CEAT. Thus, gender extractability is a more reliable indicator of gender bias in NLP models.

ing. Hence, the debiasing was primarily cosmetic, and the representations within the LM were not debiased. The model fine-tuned on oversampled

sic metrics. However, compression as an intrinsic bias metric can indicate meaningful debiasing of internal model representations even when not all

My take

But authors assume it all along...


while not always in CEAT. Thus, gender extractability is a more reliable indicator of gender bias in NLP models.

ing. Hence, the debiasing was primarily cosmetic, and the representations within the LM were not debiased. The model fine-tuned on oversampled

sic metrics. However, compression as an intrinsic bias metric can indicate meaningful debiasing of internal model representations even when not all

An experimental laboratory, dark pink

A crowd of researchers attending a conference in the middle of the desert