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Extrinsic vs. Intrinsic Gender Bias

• Intrinsic bias


• Internal representations (WEAT and co.)


• Extrinsic bias


• Downstream performance (Group parity and co.) 

“Our goal is […] understanding the

relationship between a model’s internal representations and its extrinsic gender bias


by examining the effects of various debiasing methods on the model’s representations”
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2. Measure impact

How do they measure bias?

How do they debias?
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• Contextualised Embedding 
Association Test (CEAT) 

• Compression


• Predicting gender from 
model’s representations


• Minimum Description 
Length (MDL) probe
Voita and Titov, 2020

Gun and Caliskan, 2020
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• TPR and FPR gaps


• 1) sum(gaps)


• 2) Pearson(class gap, women employment) 
(from labour statistics)


• Independence


• Separation


• Sufficiency

Occupation Classification:

(TPR(teacher|men) - 


TPR(teacher|women)).abs()

KL(P(r |z = z), P(r))∀z ∈ {M, F}

KL(P(r |y = y, z = z), P(r |y = y))∀z∀y

Wass(P(y | r = r, z = z), P(y | r = r))

Gun and Caliskan, 2020
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Extrinsic bias

1. Debias

• Scrubbing


• Remove “he”, “she”, “husband”, etc.


• Balancing (over- or sub-sampling genders)


• Stratified on class labels


• Anonymization (remove named entities)


• Counterfactual Augmentation

Examples



Setup

• Occupation Classification


• Bias in Bios


• Probe: [CLS], gender from bio


• Coreference Resolution


• FT: Ontonotes 5.0, T: Winobias


• Probe: profession word, stereotypical gender


• RoBERTa, DeBERTa
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The doctor called the nurse 
because he/she needed help



Compression!

• Compression captures variations 
on debiasing


• CEAT in CR shows no bias for 
unbiased models


• Superficial debiasing: effects on 
extrinsic don’t match intrinsic
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Compression!

• Compression captures variations 
on debiasing


• CEAT in CR shows no bias for 
unbiased models


• Superficial debiasing: effects on 
extrinsic don’t match intrinsic


• Strength of bias restoration is 
predicted by compression

“After”: fine-tune, freeze RoBERTa,

fine-tune CLS head
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Correlation between Intrinsic and Extrinsic

• OC: correlations appears with 
Compression after retraining


• CR: correlation is high “before” 
and decreases “after”


• CEAT has low correlation
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Authors’ take

• Compression (gender extractability) is a 
better indicator than CEAT for gender 
bias in NLP models


• High gender extractability and low 
extrinsic bias metrics means superficial 
debiasing


• Bias is still “there”, retraining restores it


• OP and CR have tell different stories
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My take
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But authors assume it all along…
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But authors assume it all along…

We should prove this!



An experimental laboratory, dark pink

Generated by the author with Stable Diffusion



A crowd of researchers attending a 
conference in the middle of the desert

Generated by the author with Stable Diffusion


