L] 18 Jun 2021

|
7

DBDMG reading group
November 26, 2021

DG

FNet: Mixing Tokens with Fourier Transforms

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontafién
Google Research
{jamesleethorp, jainslie, ilyaeck, santiontanon}@google.com

Abstract

We show that Transformer encoder architectures can be massively sped up, with
limited accuracy costs, by replacing the self-attention sublayers with simple linear
transformations that “mix” input tokens. These linear mixers, along with stan-
dard nonlinearities in feed-forward layers, prove competent at modeling semantic
relationships in several text classification tasks. Most surprisingly, we find that
replacing the self-attention sublayer in a Transformer encoder with a standard,
unparameterized Fourier Transform achieves 92-97% of the accuracy of BERT
counterparts on the GLUE benchmark, but trains nearly seven times faster on GPUs
and twice as fast on TPUs. The resulting model, FNet, also scales very efficiently



FNet: Mixing Tokens with Fourier Transforms

We mix parts of sequences to learn semantics

Since ~2017, in NLP, predominantly: )
o(lS1°)

Attention(Q, K, V') = softmax(

Recent work propose lighter attention variants (sparsity, randomicity, etc..)

The authors get rid off attention

Can we use simpler, lighter mixing strategies
and retain expressiveness (and performance)?

Linear mixing and Fourier Transform are promising avenues



FNet: Mixing Tokens with Fourier Transforms

4 l )
Add & Norm
Feed
Forward
A
Nx f_>l AdA 2 Nearea |
Multi-Head
Attention
A A A
\_ J
Positional D
Encoding
Input
Embedding

Vaswani et al.

T

Inputs

Output
t
[ Output Projection J
!
[ Dense J
’
- | ™
—{  Add&Normalize |
I
[ Feed Forward ]
N x ?
—'[ Add & Normalize ]
|
[ Fourier ]
L f L/
|
( Embeddings )
[ Word ] + [ Position ] + [ Type ]

&

J

Input

FNet encoder



FNet: Mixing Tokens with Fourier Transforms

Output
t
[ Output Projection ]
i
[ Dense ]
*
s | ™
—{  Add&Normalize |
|
[ Feed Forward ]
N x 1
—'[ Add & Normalize }
|
[ Fourier J
J
( Embeddings

~

[ Word ]+[ Position ]+[ Type ]

-

Input

FNet encoder

Original sequence

Discrete Fourier Transform

Sinewaves

Tk 0<k<N-—1.

Output sequence
\\\\\\\\\ N-—-1 ___———”'—————————————————
Xi = Z Tne
n=0

« Output: (complex) weighted sum of sine
waves at different frequencies

, deterministic

* From “time” to “frequency” domain



FNet: Mixing Tokens with Fourier Transforms

Output
t
[ Output Projection ]
i
[ Dense J
*
s | ™
—{  Add&Normalize |
[
[ Feed Forward }
N x 1
—'[ Add & Normalize ]
Y = R (Feeq (Fn(2))) -
1 4
|
( Embeddings )
[ Word ]+[ Position ]+[ Type ]

-

Input

FNet encoder

Discrete Fourier Transform

N—-1
X = ane_ Nk 0<kE<N-1.
n=0
New mixing:

- Two 1D DFT along hidden and sequence
» Take the Real part

S

dhidden

Input tokens



FNet: Mixing Tokens with Fourier Transforms

O . .
il Discrete Fourier Transform
[ Output Projection
i
[ Dense N-1 s
- T N Xp=) zpe” ¥ 0<k<N-L1
—{  Add&Normalize | n=0
I
[ Feed Forward ] New mixing:
N } .
" — - Two 1D DFT along hidden and sequence
—'[ Add & Normalize J
‘ » Take the Real part
Y = R (Feeq (Fn(2))) -
1 ~ s

(nn.Module):

):

_intt__()

__intt_ (

()._

forward(

, X):

torch.fft.fft(torch.fft.fft(x, dim=-1), dim=-2).real

Input tokens



FNet: Mixing Tokens with Fourier Transforms

Output
t
[ Output Projection J Intuition:
[ DeLse ) « Going back and forth between “time” and
p T N frequency domain®
— Add & Normalize ) * In “frequency”, the FF sublayer performs a
[ Feed Forward } (large kernel) convolution
N x 1
—'[ Add & Normalize }
y =R (Fseq (Fn())) -
1 /)
( Embeddings )
[ Word ]+[ Position ]+[ Type ]

-

Input

FNet

*almost. The resulting DFT cannot be inverted since only the real part is taken.



Can we use
and retain expressiveness (and performance)?

Transfer Learning

« MLM & NSP pre-training (dropped in [v2]) &
» (4 dataset (Raffel et al., 2019)

* GLUE benchmark
« Speed and accuracy trade-off

Long-Range Arena benchmark (Tay et al., 2020)

« Tasks with long range dependencies

« Vanilla Transformer is (by a small margin) the second most accurate
» Performer (Choromanski et al., 2020) is the fastest



Transfer learning

» Test FNet against 4 models

0
6
BERT Linear mixing

s | B

—{  Add&Normalize |

. I
fixed ‘ Feed Forward ]
N x
fixed

J

Random mixing Feed Forward-only



Transfer learning: MLM and NSP pre-training

Loss Accuracy
Model Total MLM NSP | MLM NSP
BERT-Base 1.76 148 0.28 | 0.68 0.86
Linear-Base 212 178 035 | 062 0.83
FNet-Base 245 206 040 | 058 0.80
Random-Base 502 448 055 | 026 0.70
FF-only-Base 754 685 069 013 0.50
FNet-Hybrid-Base | 2.13 1.79 034 | 0.63 0.84
BERT-Large 149 123 025 | 0.72 0.88
Linear-Large 191 160 031 | 065 0.85
FNet-Large 211 175 036 | 063 0.82

Model | GPU TPU

" BERT-Base 161 41

* Linear-Base 28 (5.7x) 23 (1.8x)
FNet-Base 24 (6.9x) 21 (2.0x)
Random-Base 26 (6.1x) 21 (2.0x)
FF-only-Base 21 (7.8x) 20 (2.0x)
FNet-Hybrid-Base | 28 (5.7x) 22 (1.8x)
BERT-Large OOM 89

- Linear-Large OOM  51(1.8x)
FNet-Large 70 44 (2.0x)

Results on TPU (4 x 4 v3)

... but they are required

Not all the mixings are valid...

Pre-training milliseconds per step with
BS of 64 on GPU and 256 on TPU

Linear and FNet are less accurate but much faster

FNet-Hybrid uses attention in the last two layers

BERT Is more expressive thanks to task specific, per token weights



Transfer learning: MLM and NSP pre-training

Dimensions Parameters (millions)
Name dn, ~ Layers | BERT Linear FNet
Large 1024 24 338 268 237
Base 768 12 111 93 83
512 12 55 49 42
512 8 42 38 34
256 8 15 15 13
“Mini” 512 4 30 28 26
256 4 12 12 11
“Micro” | 256 2 10 10 10
128 2 5 5 4
.......................................... )
< AT T e T -
R 0 . -".A A
~  55% T Mini ®
< 50% T P A
=
= A
) 45% + o
2 - Micro
E 40% T | 7Y
o 350 + ® e BERT 4 Linear = FNet
30% } t t } t } }
8 10 20 40 60 80 100

Time per training step (ms; log scale)

Figure 2: Speed-accuracy trade-offs for GPU pre-training. The dotted line shows the Pareto efficiency
frontier. For smaller models, the FNet (yellow squares) and Linear (red triangles) models define the
frontier, indicating better speed-accuracy trade-offs.



Transfer learning: GLUE

* Re

Table 1: GLUE Validation results on TPUs, after finetuning on respective tasks and using their
standard metrics: mean F1 scores for QQP and MRPC, Spearman correlations for STS-B and
accuracy scores for all other tasks. The MNLI metrics are reported by the match/mismatch splits.
Average scores exclude any failure cases. After controlling for batch size and training steps, the GPU
metrics (not shown) are very similar.

Model | MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE | Avg.
BERT-Base 84/81 87 91 93 73 89 83 69 | 833
Linear-Base 74/75 84 80 94 67 67 83 69 | 77.0
FNet-Base 72/73 83 80 95 69 79 76 63 | 76.7
Random-Base 51/50 70 61 76 67 4 73 57 | 56.6
FF-only-Base 34/35 31 52 48 67 FAIL 73 54 | 49.3
FNet-Hybrid-Base | 78/79 85 88 94 76 86 79 60 | 80.6
BERT-Large 88/88 88 92 95 71 88 86 66 | 84.7
Linear-Large 35/36 84 80 79 67 24 73 60 | 59.8
FNet-Large 78/76 85 85 94 78 84 88 69 | 819

sults match the ones from pre-training

« Linear encoder is still slightly more accurate but slower than FNet

With larger models, Linear gets worse



Long-Range Arena benchmark

Table 4: Accuracy results on the Long-Range Arena (LRA) benchmark, obtained on TPUs as in Tay
et al. (2020c). Asterisked results are quoted from Tay et al. (2020c). Average scores do not include
the Path-X task, which all models fail, but for different reasons: Transformer fails due to memory
limits, whereas the other models perform no better than chance on the task.

Model ListOps Text Retrieval Image Pathfinder Path-X | Avg.
Transformer (ours) | 36.06 61.54 59.67 41.51 80.38 OOM | 55.83
Linear (ours) 33.75 53.35 58.95 41.04 83.69 FAIL | 54.16
FNet (ours) 35.33 65.11 59.61 38.67 77.80 FAIL | 55.30
Transformer (*) 36.37 64.27 57.46 42.44 71.40 OOM | 54.39
Performer (*) 18.01 65.40 53.82 42.77 77.05 FAIL | 51.41

Table 5: GPU training on the Long-Range Text classification task, for sequence lengths up to 8192.
Left: training speeds (in steps per second; larger is better), with speed-up multipliers relative to the
Transformer given in parentheses. Right: peak memory usage (in GB; smaller is better).

Training Speed (steps/s) Peak Memory Usage (GB)
Seq. length 512 1024 2048 4096 8192 | 512 1024 2048 4096 8192
Transformer 26 11 4 OOM OOM |16 40 122 OOM OOM
Linear 49 (1.9x) 23(2.0x) 1126x) 4 OOM |09 16 28 69 OOM
FNet (FFT) | 60 (2.3x) 30 (2.7x) 16 (3.9x) 8 4 (08 13 22 39 7.4
Performer |32 (1.3x) 19(1.6x) 10(2.3x) 5 2 1 19 31 55 104




The authors’ take

may work as a drop-in replacement for the attention
mechanism

* FNets achieve counterparts’
accuracy on GLUE but train seven times faster on GPUs and twice on
TPUs

* FNet is comparable to efficient Transformers on LRA benchmark, with a
lighter memory footprint

* FNet can be a lightweight, for resource-
constrained settings



My take

» The performance drop is significant

* Linear encoder is as competitive as FNet (see MLP-Mixer, Tolstikhin et
al., 2021)

» Results from the hybrid model are interesting: does the scaled dot-
product attention act as a pooler of raw, unrouted information?



My take

» The performance drop is significant

» Linear encoder is as competitive as FFT (see MLP-Mixer, Tolstikhin et al.,
2021)

» Results from the hybrid model are interesting: does the scaled dot-
product attention act as pooler of raw, unrouted information?



