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Vision-for-Language Diagnostic
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Pretrained vision-and-language BERTSs aim to
learn representations that combine informa-
tion from both modalities. We propose a di-

P(IMASK]

a agnostic method based on cross-modal input

) ablation to assess the extent to which these

@\ models actually integrate cross-modal infor-

Q' mation. This method involves ablating inputs [MASK] playing tennis  [MASK] playing tennis ~ [MASK ] playing tennis
D) from one modality, either entirely or selec- None Object All

N

fivelv baced on crocsc-modal oronindino alion-



Vision-and-Language or Vision-for-Language?
On Cross-Modal Influence in Multimodal Transformers

* Recent surge of
variants leverage transformers, BERT-like
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UNITER: Learning UNiversal Image-TExt Representations, 2019, Chen et al.
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How do these models combine
information from both modalities?

Is it Text prevalent? Or Vision?

The authors proposed a cross-modal
input ablation diagnostic method

..or

How good are models are predicting
text, if vision is ablated?

How good are models are predicting
vision, if text is ablated?
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How do these models combine
information from both modalities?
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text, if vision is ablated? [
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There are asymmetries!
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Cross-modal input ablation diagnostic

method
 Straightforward to perform

* Previous work focused on interpreting
activations or attention — difficult

Vision-for-Language Diagnostic

.—‘—

[MASK] playing tennis  [MASK] playing tennis [ MASK ] playing tennis

None Object All

girl)

p(IMASK]

Language-for-Vision Diagnostic

-
a [ ]

Girl playing tennis [MASK] playing tennis  [MASK][MASK][MASK]

None Phrase All




Vision-and-Language or Vision-for-Language?
On Cross-Modal Influence in Multimodal Transformers

Cross-modal input ablation diagnostic
method

 Straightforward to perform
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* Previous work focused on interpreting
activations or attention — difficult

[MASK] playing tennis  [MASK] playing tennis [ MASK ] playing tennis

None Object All

If the model learns, during training, to use both modalities...
... ablating one of two, during evaluation, will cause a drop in performance
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- \What should we ablate?

* We suppose that models learn alignments between visual concepts and
phrases

e Let’s break them Object
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* Vision-for-Language Diagnostic
Ablate: None, Obiject, All

Language task:

« Masked Language Modelling

Masked language modelling The MLM task is
to predict the identity of a set of masked tokens wy,,
given unmasked tokens w\ ,,, and visual context v:

MLM(m7 W, Vi 9) ke Z lOgQ ]P)Q(W1|W\ma V)a
1€m
(1)

where 6 denotes a model’s parameters.
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Language-for-Vision Diagnostic
Ablate: None, Phrase, All

Vision task:
Masked Region Classification

Masked region classification The MRC task is
to predict the object class of a masked visual re-
gion v; given unmasked visual context v\, and
tokens w. The MRC-KL variant (Li et al., 2019)
measures the KL-divergence of the predicted distri-
bution rather than the cross-entropy against a single
object class. For each masked region v; linked to a
phrase, MRC-KL is computed as follows:

MRC-KL(w, v;; 0) = KL(Py(v;)|[Pg(vi|W, V\m)),

(2)
where P, is the target object distribution and Py
is the distribution predicted by the model. During
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Models:

 LXMERT (Tan and Bansal, 2019), ViL-BERT (Lu et al., 2019) (dual-stream); VLBERT (Su et
al., 2020), VisualBERT (Liet al., 2019) and UNITER (Chen et al., 2020) (single-stream)

Pretraining on
* Objectives: MLM, MRC-KL, Image-Text alignment

“Silver” labels for MRC provided by

* ~ 1650 classes

Region overlap: :
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» As expected, ablation removes useful information

Vision-for-Language (good)
The drop removing Allis much more significant than removing Object
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» As expected, ablation removes useful information

Language-for-Vision (bad)
Small 0.5%-3% drop: language for vision is much less used
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Why is that?
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Language-for-Vision (bad)

Small 0.5%-3% drop: language for vision is much less used

Different initializations or masking strategies do not impact
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Language-for-Vision (bad)
Small 0.5%-3% drop: language for vision is much less used

* But “silver” labels are noisy Error Distribution of Faster R-CNN by Category
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The silver distributions are noisy On the Label-
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The authors’ take

in pretrained vision and language models
* Prediction of Text relies on Vision activations, but not vice versa

« “Silver” labels are unreliable

+ They might introduce more noise than expected if pretraining language-for-vision

» The asymmetry does not affect performance on downstream tasks

(sequence classification, visual question answering, etc.) (Bugliarello et
al., 2021)

* |n the future, we (e.g.,
text-modulated object detection)



