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Social Biases in LMs
Why they are there, how do we measure and mitigate them



Nice to meet you!

• Postdoc @ MilaNLP, Bocconi, Milano


• NLP and vision-language multimodality


• Hate Speech and Misogyny Detection


• Analysis and Interpretability of LLMs
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• What is social bias in NLP


• What evidence we have


• How do we measure the issue


• How are we fixing it


• Pointers to get started with the 
literature

What is this talk about What it is not

• Technical gibberish


• Algorithms and models


• There is a pointer for each
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Language Models are Ubiquitous and have a real Social Impact
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Social Bias and Computer Systems
Behaviour that leads a model to discriminate against 

a social category in favour of others.

Friedman and Nissenbaum (1996)
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Social Bias and Computer Systems
Behaviour that leads a model to discriminate against 

a social category in favour of others.

Bender et al. (2018), Dixon et al (2018), Savoldi et al. (2021), Bender et al. (2021)

TECHNICAL

Data Collection

Modelling Choices

ML
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Asymmetric 
data collection

Evaluation Choices
Rewarding 

the wrong thing
“Cover-up” solutions

Data-centric algorithms 
standardardize dominant views



Evidence of Technical Bias

• I am a gay man
Dixon et al. (2018)

High toxicity scores

• Wussup, n*gga!
Sap et al. (2019)

• “[F]or many Africans, the most threatening 
kind of ethnic hatred is black against 
black.” - New York Times

Kennedy et al. (2019)
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“Gay” often sampled in 
toxic contexts

Annotators insensitivity 
to AAE dialects

“Black” often sampled in 
hateful posts



The physician hired the secretary because he was overwhelmed with clients.

Gender bias in  
Coreference Resolution

The physician hired the secretary because she was overwhelmed with clients.

The doctor asked the nurse to help her in the procedure
El doctor le pidió a la enfermera que la ayudara con el procedimiento

Gender bias in  
Machine Translation

La doctora el enfermero

Evidence of Technical Bias

Zhao et al. (2018), Rudinger et al (2018), Stanovsky et al. (2019)
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Ok but, 
how do we evaluate bias?

Should we look “inside” language systems?

Should we infer something on how it “behaves”?
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Intrinsic and Extrinsic Bias
or “representations” and “behaviours” 

• Intrinsic bias


• Geometries and Embedding spaces


• What’s wrong with them (WEAT, XWEAT, CEAT)


• Extrinsic bias


• Model performance on downstream tasks


• Is there any group disparity?

Caliskan et al. (2017), Lauscher and Glavas (2019), Guo and Caliskan (2020)

Goldfarb-Tarrant et al. (2021), Czarnowska et al. (2021)

Simplified view of an embedding space

Gender FPR FNR

F 0.87 0.45

M 0.12 0.41

NB 0.92 0.89

Example of performance on slices by gender
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Intrinsic Bias in Embedding Spaces
Word Embedding Association Test

• Mean difference between two sets of concept words (X={math, algebra}, 
Y={poetry, literature}) and two of attribute words (A={she, woman}, B={he, 
man}), builds on the Implicit Association Test

s(X, Y, A, B) = ∑
x∈X

s(x, A, B) − ∑
y∈Y

s(y, A, B)

s(w, A, B) = meana∈A cos( ⃗w , ⃗a ) − meanb∈B cos( ⃗w , ⃗b )

Caliskan et al. 2017, Greenwald et al. (1998)
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Intrinsic Bias in Transformers
Compression of Gender in Representations

• Measures how “easy” is to extract gender 
from model representations. It uses a 
Minimum Description Length (MDL) 
probing classifier. 


• Higher compression, higher gender 
extractability, higher bias

Orgard et al. (2022), Voita and Titov (2020)
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Intrinsic Bias in Transformers
Stereotypical Resolutions

• StereoSet and CrowS-Pairs


• “My housekeeper is [BLAK]”  

• “American” and “Mexican” should have the 
same probability for the mode


• “[BLANK] people can never really be attractive” 

• “Fat” and “Thin” can be substitute equally

Nadeem et al. (2020), Nangia et al. (2020)
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Extrinsic bias in Classifiers
Group disparity in performance

• False Positive and False Negative Equality difference


• Subgroup AUC (threshold agnostic)


• Predictive Parity


• Diff. in precision on a protected group 


• Equality of Opportunity


• Diff. in recall

∑
t∈T

FPR − FPRt

∑
t∈T

FNR − FNRt
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How about we mitigate this?



• “Moving” word embeddings for fairer spaces


• Lipstick on a pig?


• In LLMs, reducing bias through regularisation


• Reducing the importance of specific terms 


• Reducing lexical overfitting


• Dataset “debiasing"

How about we mitigate this?

Bolukbasi et al. (2016)

Kennedy et al. (2020), Attanasio et al. (2022)

Programmer Woman

Man

Man Woman

Programmer
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Gonen and Goldberg (2019)

ℒ = ℒCLS + αℒREG



Tweaking the data

• Scrubbing (remove “he”, “she”, “husband”, “wife”, etc.)


• Balancing to represent groups equally


• Counterfactual Data Augmentation

My sister is taking a painting class this summer, so she has been sharing lectures.

My brother is taking a painting class this summer, so he has been sharing lectures.

De-Arteaga (2019), Zhao et al (2018)

Example of CDA



Intrinsic vs. Extrinsic

• If we fix one we don’t necessarily fix 
the other


• Do we need both?


• If yes, why?


• If not, which is best?


• Ideally, we should find intrinsic reliably 
correlated with extrinsic 

Goldfarb-Tarrant et al. (2021), Cao et al. (2022)



Studying Bias in a Normative Process

• Does bias necessarily imply harms?


• What kind of behaviour is harmful?


• In what ways? To whom? Why? 


• NLP papers conceptualise the same “bias” 
differently


• Embedding spaces


• Group performance

Blodgett et al., 2020

Normatively, we shouldn’t 
use demographics



Things are far from being solved

Strong focus on intrinsic measures, 
but the world operates on applications

Gender bias has the largest slice 
but there is more

Gender as a binary variable, 
even metrics are designed for that  

Different metrics tell different stories

Thanks!

Data-driven training 
“bias” often studied post-hoc
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